Skip to main content

Advertisement

Log in

Power oscillations damping using wide-area-based solar plant considering adaptive time-delay compensation

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate the use of the ever increasing penetration of renewable energy into the power grid to solve challenging problems such as inter area power oscillations without the use of expensive power electronic devices and power system stabilizers. The increase in size of interconnected power systems, energy demand, and installation of remote renewable energies with relatively weak tie-lines has witnessed different stability problems such as low-frequency inter-area oscillations. Inter-area oscillation reduces system stability and transmission capacity. Without effective damping control mechanism, these oscillations could prolong and threaten the security of the system. This paper proposes a supplementary controller from a photovoltaic (PV) solar plant for damping inter-area oscillations. Due to its strong correlation to active power flow and monitoring system stress, area phase-angle difference is employed for the remote signal input of the controller. The signal can be obtained from phasor measurement unit (PMU) through wide-area measurements systems (WAMS). To deal with a wide range of variable delay in the signal input, an adaptive compensator is designed to reduce the impact of the communication latency using neuro-fuzzy inference system. A two-area four-machine test system is used and simulated with a Simulink-based package developed for the work of this study. The time-domain simulations, modal and frequency response analysis demonstrate the capability of the proposed controller to effectively damp inter-area oscillations, under a small- and large-scale disturbances and against a wide range of time delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kundur, P., et al.: Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans. Power Syst. 19(3), 1387–1401 (2004)

    Article  Google Scholar 

  2. Abdulrahman, I., Radman, G.: Wide-area-based adaptive neuro-fuzzy SVC controller for damping inter-area oscillations. IEEE Can. J. Electr. Comput. Eng. 41(3), 133–144 (2018)

    Google Scholar 

  3. Shah, R., Mithulananthan, N., Lee, K.Y.: Large-scale PV plant with a robust controller considering power oscillation damping. IEEE Trans. Energy Convers. 28(1), 106–116 (2013)

    Article  Google Scholar 

  4. Zhou, L., et al.: Damping inter-area oscillations with large-scale PV plant by modified multiple-model adaptive control strategy. IEEE Trans. Sustain. Energy 8(4), 1629–1636 (2017)

    Article  Google Scholar 

  5. You, S., et al.: Impact of high PV penetration on the inter-area oscillations in the U.S. Eastern interconnection. IEEE Access 5, 4361–4369 (2017)

    Article  Google Scholar 

  6. Shen, Y., Yao, W., Wen, J., He, H.: Adaptive wide-area power oscillation damper design for photovoltaic plant considering delay compensation. IET Gen. Trans. Distrib. 11(18), 4511–4519 (2017)

    Article  Google Scholar 

  7. Phadke, A.G., Thorp, J.S.: Synchronized Phasor Measurements and Their Applications. Springer, New York (2008)

    Book  Google Scholar 

  8. Pal, B., Chaudhuri, B.: Robust Control in Power System. Springer, New York (2005)

    Google Scholar 

  9. Grigsby, L.: Power System Stability and Control, 3rd edn. CRC Press, New York (2012)

    Google Scholar 

  10. Li, Y., Yang, D., Liu, F., Cao, Y., Rehtanz, C.: Interconnected Power Systems. Springer, Berlin (2016)

    Book  Google Scholar 

  11. Technical Reference Document: Phase angle monitoring: industry experience following the 2011 Pacific Southwest outage recommendation 27. North American Electric Reliability Cooperation (NERC) (2016)

  12. Darvishi, A., Dobson, I.: Threshold-based monitoring of multiple outages with PMU measurements of area angle. IEEE Trans. Power Syst. 31(3), 2116–2124 (2016)

    Article  Google Scholar 

  13. Sauer, P., Pai, M.A., Chow, J.H.: Power System Dynamics and Stability, 2nd edn. Wiley, Amsterdam (2017)

    Google Scholar 

  14. Eftekharnejad, S., Vittal, V., Heydt, G.T., Keel, B., Loehr, J.: Small signal stability assessment of power systems with increased penetration of photovoltaic generation: a case study. IEEE Trans. Sustain. Energy 4(4), 960–967 (2013)

    Article  Google Scholar 

  15. WECC Renewable Energy Modeling Task Force: WECC solar plant dynamic modeling guidelines (2014)

  16. Sandia National Laboratories: Generic Solar Photovoltaic System Dynamic Simulation Model Specification. California (2013)

  17. Islam, M.R., Rahman, F., Xu, W.: Green Energy and Technology: Advances in Solar Photovoltaic Power Plants. Springer, Berlin (2016)

    Google Scholar 

  18. Shah, R., Mithulananthan, N., Bansal, R.: Oscillatory stability analysis with high penetrations of large-scale photovoltaic generation. Elsevier Energy Convers. Manag. 65, 420–429 (2013)

    Article  Google Scholar 

  19. Shah, R., Mithulananthan, N., Bansal, R., Ramachandaramurthy, V.: Oscillatory stability analysis with high penetrations of large-scale photovoltaic generation. Elsevier Renew. Sustain. Energy Rev. 41, 1423–1436 (2015)

    Article  Google Scholar 

  20. Johansson, E., Uhlen, K., Leirbukt, A.B., Korba, P., Gjerde, J.O., Vormedal, L.K.: Coordinating power oscillation damping control using wide area measurements: In: 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA, pp. 1–8 (2009)

  21. Korba, P., Knazkins, V., Larsson, M.: Power system stabilizer with synchronized phasor measurements. In: 17th Power Systems Computation Conference, Stockholm (2011)

  22. Abdulrahman, I., Radman, G.: Simulink-based program for simulating multi-machine power systems. IEEE Power and Energy Society General Meeting, Portland (2018)

    Book  Google Scholar 

  23. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: MATPOWER: steady-state operations, planning and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

  24. Kundur, P.: Power System Stability and Control. Mc-Graw- Hill, New York (1994)

    Google Scholar 

  25. Dotta, D., Silva, A.S., Decker, I.C.: Wide-area measurement-based two-level control design considering signals transmission delay. IEEE Trans. Power Syst. 24(1), 208–216 (2009)

    Article  Google Scholar 

  26. Majumder, R., Pal, B.C., Dufour, C., Korba, P.: Design and real-time implementation of robust FACTS controller for damping inter-area oscillation. IEEE Trans. Power Syst. 21(2), 809–816 (2006)

    Article  Google Scholar 

  27. Majumder, R., Chaudhuri, B., Pal, B.C.: A probabilistic approach to model-based adaptive control for damping of inter-area oscillations. IEEE Trans. Power Syst. 20(1), 367–374 (2005)

    Article  Google Scholar 

  28. Chaudhuri, B., Pal, B.C.: Robust damping of multiple swing modes employing global stabilizing signals with a TCSC. IEEE Trans. Power Syst. 19(1), 499–506 (2004)

    Article  MathSciNet  Google Scholar 

  29. Chaudhuri, N.R., Ray, S., Majumder, R., Chaudhuri, B.: A new approach to continuous latency compensation with adaptive phasor power oscillation damping controller (POD). IEEE Trans. Power Syst. 25(2), 939–946 (2010)

    Article  Google Scholar 

  30. Kamwa, I., Grondin, R., Hebert, Y.: Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach. IEEE Trans. Power Syst. 16(1), 136–153 (2001)

    Article  Google Scholar 

  31. H. Wu, Q. Wang, X. Li: PMU-based wide area damping control of power systems. In: Proceedings of Joint International Conference Power System Technology, IEEE Power India Conference, New Delhi, India, pp. 1–4 (2008)

  32. Mathur, N., Gleska, I., Buis, A.: Comparison of adaptive neuro-fuzzy inference system (ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction of skin temperature in lower limb prostheses. Elsevier Med. Eng. Phys. 38(10), 1083–1089 (2016)

    Article  Google Scholar 

  33. Suparta, W., Alhasa, K.: Modeling of Tropospheric Delays Using ANFIS. Springer, New York (2016)

    Book  Google Scholar 

  34. Dudgeon, G.J.W., Leithead, W.E., Dysko, A., O’Reilly, J., McDonald, J.R.: The effective role of AVR and PSS in power systems: frequency response analysis. IEEE Trans. Power Syst. 22(4), 1986–1994 (2007)

    Article  Google Scholar 

  35. Dorf, R.C., Bishop, R.H.: Modern Control Systems, 12th edn. Pearson Education, New Jersey (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Abdulrahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XPS 165 kb)

Supplementary material 2 (MP4 122949 kb)

Appendices

Appendix I: Nomenclature

\( R_{s} \)

Stator resistance in pu

\( \varPsi_{2q} \)

Damper winding 2q flux linkages in pu

\( X_{d} \)

d-axis reactance in pu

\( \delta \)

Rotor angle in rad

\( X_{d}^{ '} \)

Transient d-axis reactance in pu

\( w \)

Angular speed of generator in rad per second

\( X_{d}^{"} \)

Sub-transient d-axis reactance in pu

\( \bar{V}_{i} \)

Complex voltage phasor

\( X_{q} \)

q-axis reactance in pu

\( V \)

Magnitude of bus voltage in pu

\( X_{q}^{ '} \)

Transient q-axis reactance in pu

\( \theta \)

Angle of bus voltage in rad

\( X_{q}^{"} \)

Sub-transient q-axis reactance in pu

\( \bar{I}_{Gi} \)

Generator complex current phasor

\( H \)

Shaft inertia constant in second

\( I_{Gi} \)

Generator current magnitude in pu

\( w_{s} \)

Generator synchronous speed in rad per second

\( \gamma_{i} \)

Generator current angle in rad

\( T_{do}^{ '} \)

d-axis time constant associated with \( E_{q}^{ '} \) in second

\( I_{d} \)

d-axis current in pu

\( T_{do}^{"} \)

d-axis time constant associated with \( {{\varPsi }}_{1d} \) in second

\( I_{q} \)

q-axis current in pu

\( T_{qo}^{'} \)

q-axis time constant associated with \( E_{d}^{ '} \) in second

\( \alpha_{ik} \)

Angle of admittance \( Y_{ik} \) in rad

\( T_{qo}^{"} \)

q-axis time constant associated with \( {{\varPsi }}_{2q} \) in second

\( E_{fd} \)

Field voltage in pu

\( T_{A} \)

Amplifier time constant in second

\( V_{R} \)

Exciter input in pu

\( T_{CH} \)

Incremental steam chest time constant in second

\( R_{F} \)

Rate feedback in pu

\( T_{SV} \)

Steam valve time constant in second

\( T_{M} \)

Mechanical input torque in pu

\( K_{A} \)

Amplifier gain

\( P_{SV} \)

Steam valve position in pu

\( K_{E} \)

Separate or self-excited constant

\( P_{C} \)

Control power input in pu

\( E_{q}^{ '} \)

q-axis transient internal voltages in pu

\( R_{D} \)

Speed regulation quantity in Hz/pu

\( E_{d}^{ '} \)

d-axis transient internal voltages in pu

\( V_{ref} \)

Reference voltage input in pu

\( E \)

Internal voltage in pu

\( S_{E} \)

Saturation function

\( \varPsi_{1d} \)

Damper winding 1d flux linkages in pu

\( T_{FW} \)

Frictional windage torques

Appendix II: controller optimized parameters

  • \( T_{p} \) and \( T_{q} \)  = 0.01 are obtained from [4]

  • PI-1: P = 11.5793; I = 0.014.

  • PI-2: P = 0.4272; I = 0.2951.

  • k = 30.586043917533246.

  • T1 = 0.055092716680820, T2 = 0.012935893916115.

  • T3 = 0.011403037122928, T4 = 0.140082291517591.

Appendix III

See Tables 2 and 3 in appendix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulrahman, I., Belkacemi, R. & Radman, G. Power oscillations damping using wide-area-based solar plant considering adaptive time-delay compensation. Energy Syst 12, 459–489 (2021). https://doi.org/10.1007/s12667-019-00350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-019-00350-2

Keywords

Navigation