Skip to main content

Advertisement

Log in

Energy approach analysis of desiccant wheel operation

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

This paper focuses on desiccant wheel (DW) energy analysis. Numerical modeling is developed for the DW which is the key component of desiccant cooling systems. The mathematical model is validated by experimental results. In this paper, energy effectivenesses of DW are studied as well as energy consumption. An energy relation is developed and used to calculate DW power consumption, which is consisted of both DW drive power consumption and regeneration heat. Trends of energy effectivenesses of DW are presented in the various regeneration temperatures and DW speeds. An energy term is defined by dividing total power consumption to the adsorbed water rate and introduced as “specific adsorption energy (SAE)”. In addition to specific adsorption energy trends in the various regeneration temperatures and DW speeds, Genetic algorithm is used to find the minimmal point of SAE in the range of operating variables. The optimization results show that in the regeneration temperature of 61.9 \(^{\circ }\)C and rotation DW speed of 21.2 (Rph), minimmal SAE of DW is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(a\) :

Channel height (m)

\(b\) :

Channel width (m)

\(C_{p}\) :

Specific heat (J /kg K)

\(d_{e}\) :

Hydraulic diameter (m)

\(h\) :

Enthalpy (kJ /kg)

\(h_{c}\) :

Convective heat transfer coefficient (W /m\(^{2}\) K)

\(h_{fg}\) :

Latent heat of water vaporization (kJ /kg)

\(K_{y}\) :

Mass transfer coefficient (kg /m\(^{2}\) s)

\(L\) :

Channel length (m)

\(\dot{m}\) :

Air mass flow (kg /s)

\(N\) :

Desiccant wheel rotational speed (Rph)

\(p\) :

Pressure (Pa)

\(P_{t}\) :

Total DW power consumption (kW)

\(q_{st}\) :

Heat of adsorption(J /kg adsorbed)

\(\dot{Q}\) :

Energy rate (kW)

\(Rph\) :

Wheel speed (rev. / h)

\(T\) :

Temperature (K)

\(u_{a}\) :

Air velocity (m/s)

\(v\) :

Specific volume (m\(^{3}\)/kg)

\(W\) :

Desiccant water content (kg/kg)

\(Y_{a}\) :

Air humidity ratio (kg/kg)

\(Z\) :

length direction (m)

\(\delta \) :

Desiccant felt thickness (m)

\(\varepsilon \) :

Felt porosity

\(\rho \) :

Density (kg/m\(^{3})\)

\(\emptyset \) :

Relative humidity (%)

\(\Phi \) :

Desiccant wheel diameter (m)

\(0\) :

Ambient state

\(1-5\) :

States point of air in Fig. 2

\(a\) :

Air

\(d\) :

Desiccant

\(L\) :

Liquid water

\(p\) :

Process

\(r\) :

Regeneration

\(v\) :

Water vapor

\(vs\) :

Saturate water vapor

References

  1. Daou, K., Wang, R.Z., Xia, Z.Z.: Desiccant cooling air conditioning: a review. Renew. Sustain. Energy Rev. 10, 55–77 (2006)

    Google Scholar 

  2. La, D., Dai, Y.J., Li, Y., Wang, R.Z., Ge, T.S.: Technical development of rotary desiccant dehumidification and air conditioning: a review. Renew. Sustain. Energy Rev. 14, 130–147 (2010)

    Google Scholar 

  3. Wang, D.C., Li, Y.H., Li, D., Xia, Y.Z., Zhang, J.P.: A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems. Renew. Sustain. Energy Rev. 14, 344–353 (2010)

    Google Scholar 

  4. Ali Mandegari, M., Pahlavanzadeh, H.: Introduction of a new definition for effectiveness of desiccant wheels. Energy 34, 797–803 (2009)

    Article  Google Scholar 

  5. Kodama, A., Hirayama, T., Goto, M., Hirose, T., Critoph, R.E.: The use of psychometric charts for the optimisation of thermal swing adsorption wheel. Appl. Therm. Eng. 21, 1657–1674 (2001)

    Article  Google Scholar 

  6. Sphaier, L.A., Worek, W.M.: Analysis of heat and mass transfer in porous sorbents used in rotary regenerators. Int. J. Heat Mass Transf. 47, 3415–3430 (2004)

    Article  MATH  Google Scholar 

  7. Ahmed, M.H., Kattab, N.M., Fouad, M.: Evaluation and optimization of solar desiccant wheel performance. Renew. Energy 30, 305–325 (2005)

    Article  Google Scholar 

  8. Jeong, J., Yamaguchi, S., Saito, K., Kawai, S.: Performance analysis of four-partition desiccant wheel and hybrid dehumidification air-conditioning system. Int. J. Refrig. 33, 496–509 (2010)

    Article  Google Scholar 

  9. Ge, T.S., Li, Y., Wang, R.Z., Dai, Y.J.: A review of the mathematical models for predicting rotary DW. Renew. Sustain. Energy Rev. 12, 1485–1528 (2008)

    Google Scholar 

  10. Zhen, W., Worek, W.M.: Numerical simulation of combined heat and mass transfer processes in a rotary dehumidifier. Numer. Heat Transf. Part A 23, 211–232 (1993)

    Article  Google Scholar 

  11. Zhang, L.Z., Niu, J.L.: Performance comparisons of DWs for air dehumidification and enthalpy recovery. Appl. Therm. Eng. 22(12), 1347–1367 (2002)

    Article  MathSciNet  Google Scholar 

  12. Jeong, J.W., Mumma, S.A.: Practical thermal performance correlations for molecular sieve and silica gel loaded enthalpy wheels. Appl. Therm. Eng. 25, 719–740 (2005)

    Article  Google Scholar 

  13. Ruivo, C.R., Costa, J.J., Figueiredo, A.R.: Validity of pseudo-gas-side-controlled models to predict the behaviour of desiccant matrices. Int. J. Therm. Sci. 48, 2171–2178 (2009)

    Article  Google Scholar 

  14. Ruivo, C.R., Costa, J.J., Figueiredo, A.R.: On the validity of lumped capacitance approaches for the numerical prediction of heat and mass transfer in desiccant airflow systems. Int. J. Therm. Sci. 47, 282–292 (2008)

    Article  Google Scholar 

  15. Chung, J.D., Lee, D.Y., Yoon, S.M.: Optimization of desiccant wheel speed and area ratio of regeneration to dehumidification as a function of regeneration temperature. Solar Energy 83, 625–635 (2009)

    Article  Google Scholar 

  16. Dai, Y.J., Wang, R.Z., Zhang, H.F.: Parameter analysis to improve rotary desiccant dehumidification using a mathematical model. Int. J. Therm. Sci. 40, 400–408 (2001)

    Article  Google Scholar 

  17. Kanoglu, M., Carpinlioglu, M.O., Yildirim, M.: Energy and exergy analyses of an experimental open-cycle desiccant cooling system. Appl. Therm. Eng. 24(5–6), 919–932 (2004)

    Article  Google Scholar 

  18. Kanoglu, M., Bolatturk, A., Altuntop, N.: Effect of ambient conditions on the first and second law performance of an open desiccant cooling process. Renew. Energy 32(6), 931–946 (2007)

    Article  Google Scholar 

  19. Carpinlioglu, M.O., Yildirim, M.: A methodology for the performance evaluation of an experimental desiccant cooling system. Int. Commun. Heat Mass Transf. 32, 1400–1410 (2005)

    Article  Google Scholar 

  20. Liu, W., Liana, Z., Radermacher, R., Yao, Y.: Energy consumption analysis on a dedicated outdoor air system with rotary desiccant wheel. Energy 32, 1749–1760 (2007)

    Article  Google Scholar 

  21. Ali Mandegari, M., Pahlavanzadeh, H.: Performance assessment of hybrid desiccant cooling system at various climates. Energy Eff. 3, 177–187 (2010)

    Article  Google Scholar 

  22. Dai, Y.J., Wang, R.Z., Zhang, H.F., Yu, J.D.: Use of liquid desiccant cooling to improve the performance of vapour compression air conditioning. Appl. Therm. Eng. 21, 185–205 (2001)

    Article  Google Scholar 

  23. http://www.abb.com/product/seitp322/5b6810a0e20d157fc1256f2d00338395.aspxaspx (2014)

  24. Madhiyanon, T., Adirekrut, S., Sathitruangsak, P., Soponronnarit, S.: Integration of a rotary desiccant wheel into a hot-air drying system: Drying performance and product quality studies. Chem. Eng. Process. 46, 282–290 (2007)

    Article  Google Scholar 

  25. Angrisani, G., Capozzoli, A., Minichiello, F., Roselli, C., Sasso, M.: Desiccant wheel regenerated by thermal energy from a microcogenerator: experimental assessment of the performances. Appl. Energy 88, 1354–1365 (2011)

    Article  Google Scholar 

  26. Man, K.F., Tang, K.S., Kwong, S.: Genetic algorithms: concepts and applications. IEEE Trans. Ind. Electron. 43(5), 519–534 (1996)

    Article  Google Scholar 

  27. MATLAB software manual (version 7.10.0.499 (R2010a)), (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Ali Mandegari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali Mandegari, M., Pahlavanzadeh, H. & Farzad, S. Energy approach analysis of desiccant wheel operation. Energy Syst 5, 551–569 (2014). https://doi.org/10.1007/s12667-013-0115-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-013-0115-z

Keywords

Navigation