Skip to main content
Log in

Modeling Study on the Initial Solidification and Formation of Oscillation Marks in Continuous Casting Mold

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A coupled model of continuous casting with mold oscillation was established including multiphase flow, heat transfer and solidification. The process of initial solidification and the formation of oscillation marks were analyzed. The accuracy of the model was verified by comparing the depth of oscillation marks and slag consumption with the measurement by the plant. The main results showed that during the negative strip stage, part of the slag near the initial solidified shell affected by the downward movement of the slag rim was squeezed out from the slag channel to the slag pool, meanwhile pressure difference of shell and heat flux was maximized, shell grew rapidly. The oscillation marks were formed during the negative strip stage. The effect of interfacial tension on the oscillating marks formation was quantitatively analyzed. These results provide theoretical support to improve the quality of the slabs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author upon reasonable request.

References

  1. Zhang X, Wang Q, Yang W, Wang S, and Zhang L, Metall Mater Trans B 49 (2018) 2533. https://doi.org/10.1007/s11663-018-1339-z

    Article  CAS  Google Scholar 

  2. Zhang X, Ren Y, Zhang L, and Yang W, Metall Mater Trans B 49 (2018) 3186. https://doi.org/10.1007/s11663-018-1366-9

    Article  CAS  Google Scholar 

  3. Zhang X, Ren Y, and Zhang L, Metall Mater Trans A 49 (2018) 5469. https://doi.org/10.1007/s11661-018-4860-4

    Article  CAS  Google Scholar 

  4. Tomono H, Kurz W, and Heinemann W, Metall Trans B 12 (1981) 409. https://doi.org/10.1007/BF02654475

    Article  Google Scholar 

  5. Ramirez Lopez P E, Mills K C, Lee P D, and Santillana B, Metall Mater Trans B 43 (2012) 109. https://doi.org/10.1007/s11663-011-9583-5

    Article  CAS  Google Scholar 

  6. Ramirez Lopez P, Sjöström U, Jonsson T, Lee P, Mills K, Petäjäjärvi M, and Pirinen J, Industrial Application of a Numerical Model to Simulate Lubrication, Mould Oscillation, Solidification and Defect Formation during Continuous Casting (2012).

  7. Zhang H, Wang W, Ma F, and Zhou L, Metall Mater Trans B 46 (2015) 2361. https://doi.org/10.1007/s11663-015-0413-z

    Article  CAS  Google Scholar 

  8. Zhang H, and Wang W, Metall Mater Trans B 47 (2016) 920. https://doi.org/10.1007/s11663-015-0579-4

    Article  CAS  Google Scholar 

  9. Yan X, Jia B, Wang Q, He S, and Wang Q, Metals 9 (2019) 418. https://doi.org/10.3390/met9040418

    Article  CAS  Google Scholar 

  10. Yang J I E, Meng X, Wang N, and Zhu M, Metall Mater Trans B 48 (2017) 1230. https://doi.org/10.1007/s11663-016-0880-x

    Article  CAS  Google Scholar 

  11. Yang J, Meng X, and Zhu M, ISIJ Int 58 (2018) 2071. https://doi.org/10.2355/isijinternational.ISIJINT-2018-169

    Article  CAS  Google Scholar 

  12. Yang J, Chen D, Long M, and Duan H, Metals 10 (2020) 51. https://doi.org/10.3390/met10010051

    Article  CAS  Google Scholar 

  13. Vynnycky M, and Zambrano M, Appl Math Model 63 (2018) 243. https://doi.org/10.1016/j.apm.2018.06.029

    Article  Google Scholar 

  14. Zhang S, Wang Q, He S, and Wang Q, Metall Mater Trans B 49 (2018) 2038. https://doi.org/10.1007/s11663-018-1267-y

    Article  CAS  Google Scholar 

  15. Zhang X-B, Chen W, and Zhang L-F, China Foundry 14 (2017) 416. https://doi.org/10.1007/s41230-017-7171-2

    Article  Google Scholar 

  16. Zhang X, Chen W, Scheller P R, Ren Y, and Zhang L, JOM 71 (2019) 78. https://doi.org/10.1007/s11837-018-3177-5

    Article  CAS  Google Scholar 

  17. Zhang X, Chen W, Ren Y, and Zhang L, Metall Mater Trans B 50 (2019) 1444. https://doi.org/10.1007/s11663-019-01570-8

    Article  CAS  Google Scholar 

  18. Ji J, Mao Y, Zhang X, Chen W, Zhang L, and Wang Q, Steel Res Int 92 (2021) 2000714. https://doi.org/10.1002/srin.202000714

    Article  CAS  Google Scholar 

  19. Ji J, Cui Y, Zhang X, Wang Q, He S, and Wang Q, Steel Res Int 92 (2021) 2100101. https://doi.org/10.1002/srin.202100101

    Article  CAS  Google Scholar 

  20. Ji J, Cui Y, Zhang X, Wang Q, He S, and Wang Q, Steel Res Int 92 (2021) 2000636. https://doi.org/10.1002/srin.202000636

    Article  CAS  Google Scholar 

  21. Brackbill J U, Kothe D B, and Zemach C, J Comput Phys 100 (1992) 335. https://doi.org/10.1016/0021-9991(92)90240-Y

    Article  CAS  Google Scholar 

  22. Blazek J, Chapter 7—turbulence modeling. in Computational Fluid Dynamics: Principles and Applications, (ed) Blazek J, Butterworth-Heinemann, Oxford (2015), p 213.

    Chapter  Google Scholar 

  23. Zhou C, Zhang X, Wang F, and Zhang F, IEEE Access 8 (2020) 1235. https://doi.org/10.1109/ACCESS.2019.2958057

    Article  Google Scholar 

  24. Shin H-J, Kim S-H, Thomas B G, Lee G-G, Park J-M, and Sengupta J, ISIJ Int 46 (2006) 1635. https://doi.org/10.2355/isijinternational.46.1635

    Article  CAS  Google Scholar 

  25. Mills K C, and Fox A B, ISIJ Int 43 (2003) 1479. https://doi.org/10.2355/isijinternational.43.1479

    Article  CAS  Google Scholar 

  26. Matsushita A, Isogami K, Temma M, Ninomiya T, and Tsutsumi K, Trans Iron Steel Inst Jpn 28 (1988) 531. https://doi.org/10.2355/isijinternational1966.28.531

    Article  Google Scholar 

  27. Badri A, Natarajan T T, Snyder C C, Powers K D, Mannion F J, Byrne M, and Cramb A W, Metall Mater Trans B 36 (2005) 373. https://doi.org/10.1007/s11663-005-0066-4

    Article  Google Scholar 

  28. Miyake T, Morishita M, Nakata H, and Kokita M, ISIJ Int 46 (2006) 1817. https://doi.org/10.2355/isijinternational.46.1817

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Hebei Province Natural Science Fund (Grant Number E2020203128) and Hebei Education Department Higher Education Science and Technology Program (Grant Number ZD2021106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XingZhong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Liu, Y., Yu, B. et al. Modeling Study on the Initial Solidification and Formation of Oscillation Marks in Continuous Casting Mold. Trans Indian Inst Met 77, 51–60 (2024). https://doi.org/10.1007/s12666-023-03040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03040-x

Keywords

Navigation