Skip to main content
Log in

Study on the Effect of Basicity on the Densification Behavior of Sinter

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In order to quantitatively analyze the coalescence behavior in the sintering process, the thermodynamic software FactSage is used to calculate the composition and properties of the melt under different basicity conditions. According to the calculation results, the surface tension and apparent viscosity of the melt under various conditions are obtained, which are used to calculate the densification coefficient of sinter. The results show that as the basicity increases, the apparent viscosity of the melt continues to decrease, and the calculated minimum value is 0.114 Pa·s at a temperature of 1350℃. The surface tension first decreases and then increases with the increase in basicity, and has a minimum value at a temperature of 1300℃, which is about 0.32 N. The coalescence behavior of sinter is driven by the apparent viscosity and surface tension. Increasing basicity is beneficial to the coalescence behavior of the sintering process and makes the densification coefficient increase. The higher the temperature, the greater the densification coefficient. Sintering experiments show that the densification coefficient is related to the porosity of the sinter and the drum index, and the densification coefficient can characterize the strength of the sinter to a certain extent in the range of basicity 1.85–2.25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duckworth W, J. Am. Ceram. Soc. 36 (1953) 68.

    Article  Google Scholar 

  2. Yang Y H , Standish N, ISIJ Int 31 (1991) 468.

    Article  CAS  Google Scholar 

  3. Bhagat R P, Chattoraj U S, Goswami M C, Singh D P, Sil S K, Steel Res. Int. 78 (2007) 451.

    Article  CAS  Google Scholar 

  4. Umadevi T, Bandopadhyay U K, Mahapatra P C, Prabhu M, Ranjan M, Steel Res. Int. 81 (2010) 419.

    Article  CAS  Google Scholar 

  5. Kingery WD, Berg M, J. Appl. Phys. 26 (1955) 47.

    Article  Google Scholar 

  6. Liu D, Evans G, Loo C E, Chem. Eng. Res. Des 130 (2018) 129.

    Article  CAS  Google Scholar 

  7. Ferreira W, Cromarty R, Villiers J, J. South. Afr. Inst. Min. Metall. 114 (2014) 325.

    CAS  Google Scholar 

  8. Debrincat D, Loo C E, Hutchens M F, ISIJ Int 44 (2004) 1308.

    Article  CAS  Google Scholar 

  9. Loo C E , Ellis B G , ISIJ Int 54 (2014) 19.

    Article  CAS  Google Scholar 

  10. Srivastava M P, Pan S K, Prasad N, Mishra B K, Int. J. Miner. Process 61 (2001) 93.

    Article  CAS  Google Scholar 

  11. Topkaya Y, Sevin N, Günaydn A, Int. J. Miner. Process 74 (2004) 31.

    Article  CAS  Google Scholar 

  12. Zhai X B, Wu S L, Zhou H, Su L X, Ma X D, Ironmaking Steelmaking 47 (2018) 1.

    Google Scholar 

  13. Li H P, Wu S L, Hong Z B, Zhang W L,Zhou H, Kou M Y, Processes 7 (2019) 931.

    Article  CAS  Google Scholar 

  14. Yang N, Guo X M,Noritaka Saito,Kunihiko Nakashima, Zhao J T, ISIJ Int. 58 (2018) 1406.

    Article  CAS  Google Scholar 

  15. Sinha M, Nistala S H, Chandra S, Mankhand T R, Ironmaking Steelmaking 44 (2017) 92.

    Article  CAS  Google Scholar 

  16. Chen C , Zhang L, Lu L, Sun S, Trans. Iron Steel Inst. Jpn. 50 (2010) 1523.

    Article  CAS  Google Scholar 

  17. Lv X W, Bai C G, Deng Q Y, Huang X B, Qiu G B, ISIJ Int 51 (2011) 722.

    Article  CAS  Google Scholar 

  18. Andrews L, Loo C E, Evans G, ISIJ Int 56 (2016) 1171.

    Article  CAS  Google Scholar 

  19. Liu D, Loo C E, ISIJ Int 56 (2016) 527.

    Article  CAS  Google Scholar 

  20. Loo C E, Leung W, ISIJ Int 43 (2007) 1393.

    Article  Google Scholar 

  21. Liu D M, Loo C E, Evans G, Int. J. Miner. Process 149 (2016) 56.

    Article  CAS  Google Scholar 

  22. Mills K C, Yuan L, Jones R T, J. South. Afr. Inst. Min. Metall 111 (2011) 649.

    CAS  Google Scholar 

  23. Vand V, J. Phys. Colloid Chem 52 (1948) 277.

    Article  CAS  Google Scholar 

  24. Mills K C, Keene B J, Int. Mater. Rev 32 (2013) 1.

    Article  Google Scholar 

  25. Wu S L, Li H P, Zhang W L, Su B, Metals 9 (2019) 404:

    Article  CAS  Google Scholar 

  26. Guo H, Guo X M, Steel Res. Int 90 (2019) 138.

    Article  Google Scholar 

  27. Xu J F,Zhang J Y, Chen D, Sheng M Q, Weng W P, J. Cent. South Univ 23 (2016) 3079.

    Article  CAS  Google Scholar 

  28. Song J, Liu Y, Lv X, J. Mater. Res. Technol 9 (2019) 13.

    Google Scholar 

Download references

Acknowledgements

Funding was provided by National Natural Science Foundation of China (Grant No. 51604199), the State Key Laboratory of Refractory Materials and Metallurgy (Grant No. 2014QN20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengming Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Z., Liu, Q. & Qin, J. Study on the Effect of Basicity on the Densification Behavior of Sinter. Trans Indian Inst Met 75, 1545–1553 (2022). https://doi.org/10.1007/s12666-022-02526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02526-4

Keywords

Navigation