Skip to main content
Log in

Production of Copper Powder by Electrodeposition with Different Equilibrium Crystal Shape

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The copper powder is electrodeposited from copper sulfate pentahydrate (CuSO4·5H2O) and sulphuric acid (H2SO4) bath. The polarization study is carried out to get an indication of limiting current density or deposition potential. Solutions are prepared with different concentrations of CuSO4·5H2O, i.e., from 0.015 to 0.35 M. Additives like sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) are used during electrodeposition. To elucidate the effect of additive on the copper electrodeposition, an equal concentration of SDS and CTAB is used for a particular concentration of CuSO4·5H2O. The examination of surface topography is carried out with the help of a scanning electron microscope. In the absence of additive, the morphology is a honeycomb like structure. However, the deposits are dendritic in nature in the presence of the additive. The smallest constituent in the dendrites is different for both the additive added solutions. In the case of CTAB, the smallest constituent is a flower like structure where microspheres of copper are embedded with nanosheets. On the other hand, the faceted crystal appears for SDS added solution. SHAPE V 7.4 software is used to draw the equilibrium crystal shape. In summary, it is concluded that the dissimilarity in the smallest constituent of dendritic morphology is associated with the concentration of the surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xue J, Wu Q, Wang Z, and Yi S, J Hydromet 82 (2006) 154.

  2. Nikolić N D, Popov K I, Pavlović Lj J, Pavlović M G, Sensor 7 (2007) 1.

  3. Nikolić N D, Popov K I, Electrochemical. Production of Metal Powders, Ser. Modern Aspect of Electrochemistry, (2012) 125.

  4. Popov K I, Pavlović M G, and Maksimović M D, J Appl Electrochem 12 (1982) 525.

  5. Orhan G, and Hapçı Ağaoğlu G, Powder technol 201, (2010) 57.

  6. Nikolić N D, Popov K I, Pavlović Lj J, Pavlović M G, J Electroana Chem 588 (2006) 88.

  7. Popov K I, Djokić S S, Nikolić N D, Jović V D, Electrochemically Produced Metal Powders BT - Morphology of Electrochemically and Chemically Deposited Metals, Springer International Publishing, Cham, (2016).

  8. Mallik M, Mitra A, Sengupta S, Das K, Ghosh R N, Das S, Cryst. Growth Des. 14 (2014) 6542.

  9. Bakshi M S, Cryst. Growth Des. 16 (2016) 1104.

  10. Akpanbayev R S, Mishra B, Baikonurova A O, Ussoltseva G A, Kurbatov A P, Int J Electrochem Sci 8 (2013) 3150.

  11. Hasanzade P, Akbaripour A, Falaki M, Tabesh E, Soleymani S, 8 (2017) 1574.

  12. Quinet M, Lallemand F, Ricq L, Hihn J -Y, Delobelle P, Arnould C, Mekhalif Z, Electrochim Acta 54 (2009) 1529.

  13. Yang Y, Han J, Ning X, Cao W, Xu W, Guo L, ACS Appl Mater Interfaces 6 (2014) 22534.

  14. Biçer M and Şişman İ, Powder Technol 198 (2010) 279.

  15. Ghosh S, and Manna L, Chem Rev 118 (2018) 7804.

  16. Shang Y, Guo L, Adv Sci 46 (2015).

  17. Murugan K, Choonara Y E, Kumar P, du Toit L C, Pillay V, Mater (Basel, Switzerland) 9 (2016) 966.

  18. Han Y J, Zhang X, Leach G W, Langmuir 30 (2014) 3589.

  19. Dong H, Wang Y, Tao F, Wang L, J Nanomater 2012 (2012) 901842.

  20. Shape Software, http://www.shapesoftware.com.

  21. Shaban M, Kholidy I, Ahmed G, Negem M, Abd El-salam H, RSC Adv 9 (2019) 22389.

  22. Zheng B, Wong L P, Wu L Y L, Chen Z, Int J Electrochem 2016 (2016) 4318178.

  23. Gálvez-Vázquez M de J, Grozovski V, Kovács N, Broekmann P, Vesztergom S, J Phys Chem C 124 (2020) 3988.

  24. Scarazzato T, Buzzi D C, Bernardes A M, Tenorio J A S, Espinosa D C R, Brazilian J Chem Eng 32 (2015) 831.

  25. Khor A, Leung P, Mohamed M R, Flox C, Xu Q, An L, Wills R G A, Morante J R, Shah A A, Mater Today Energy 8 (2018) 80.

  26. Lombardo D, Kiselev M, Magazù S, Calandra P, Adv Condens Matter Phys 2015 (2015) 151683.

  27. Liu G, Yu J C, (Max) Lu G Q, Cheng H -M, Chem Commun 47 (2011) 6763.

  28. Fan L and Guo R, Cryst Growth Des 8 (2008) 2150.

  29. Ren B, Jones L A, Chen M, Oppedisano D K, Qiu D, Ippolito S J, Bhargava S K, J Electrochem Soc 164 (2017) H1121.

  30. Seo D, Yoo C I, Park J C, Park S M, Ryu S, Song H, Angew Chem Int Ed Engl 47 (2008) 763.

  31. Demissie H and Duraisamy R,, 5 (2017) 208.

  32. Bakshi M S, Adv Colloid Interface Sci 256 (2018) 101.

Download references

Acknowledgements

We would like to express our gratitude to TEQIP VSSUT Burla for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manila Mallik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanda, B., Mallik, M. Production of Copper Powder by Electrodeposition with Different Equilibrium Crystal Shape. Trans Indian Inst Met 73, 2113–2119 (2020). https://doi.org/10.1007/s12666-020-02015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02015-6

Keywords

Navigation