Skip to main content
Log in

Creep Age Forming of Aluminum 7075 Tailor-Machined Blanks: Statistical Modeling, Sensitivity Analysis and Multi-objective Optimization

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this paper, creep age forming of aluminum 7075 tailor-machined blanks is experimentally studied. As there are two different thicknesses in a single tailor-machined blank, forming properties differ, e.g., spring-back in two sections with different thicknesses. Hence, creep age forming of this kind of blank is more difficult than monolithic plates. In the present work, the effect of two main creep forming process parameters, namely time and temperature, is investigated on spring-back of both thin and thick sections of a tailor-machined blank. First, a model was initiated and then a multi-objective optimization using response surface methodology was proposed considering time and temperature as input and spring-back as output parameters. Finally, a second-order linear regression for spring-back of thin and thick sections was introduced. Evaluation of the developed model and the role of considered parameters on spring-back were investigated using Sobol sensitivity analysis. The results showed that within the range of considered parameters with an increase in both time and temperature, spring-back for both thin and thick sections decreases. Based on the multi-objective optimization of the present work, the best time and temperature for creep age forming in a 7075 tailor-machined blank with minimum spring-back in both thin and thick sections are 19.6 h and 232 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nguyen N T, Hariharan K, Chakraborti N, Barlat F, and Lee M G, Steel Res Int86 (2015) 1391.

    Article  CAS  Google Scholar 

  2. Lyu F, Li Y, Huang X, Shi Z, Zeng Y, and Lin J, J Manuf Processes37 (2019) 232.

    Article  Google Scholar 

  3. Liu C, Liu Y, Li S, Ma L, Zhao X, and Wang Q, Mater Sci Eng A725 (2018) 375.

    Article  CAS  Google Scholar 

  4. Li Y, Shi Z, Lin J, Yang Y, Saillard P, and Said R, Int J Mach Tools Manuf132 (2018) 113.

    Article  Google Scholar 

  5. Li Y, Shi Z, Lin J, Yang Y, Saillard P, and Said R, Int J Mach Tools Manuf140 (2018) 228.

    Google Scholar 

  6. Xu Y, Zhan L, Huang M, Shen R, Ma Z, Xu L, Wang K, and Wang X, J Mater Process Technol255 (2018) 26.

    Article  CAS  Google Scholar 

  7. Yang Y, and Zhan L, Proc Manuf15 (2018) 1000.

    Google Scholar 

  8. Zimmermann F, Brosius A, Beyer R E, Standfuß J, Jahn A, and Banke D, Proc Manuf15 (2018) 1008.

    Google Scholar 

  9. Yang Y, Zhan L, Shen R, Yin X, Li X, Li W, Huang M, and He D, Mater Sci Eng A683 (2017) 227.

    Article  CAS  Google Scholar 

  10. Ershadi Khamneh M, Askari-Paykani M, Shahverdi H, Hadavi S M M, and Emami M, Measurement88 (2016) 278.

    Article  Google Scholar 

  11. Zhan L H, Tan S G, Yang Y L, Huang M H, Shen W Q, and Zhao X, Adv Mech Eng (2014) http://dx.doi.org/10.1155/2014/707628.

    Article  Google Scholar 

  12. Zhan L H, Tan S G, Huang M H, and Xu H Y, Mater. Mech. Eng 01 (2013) 63.

    Google Scholar 

  13. Wang Y K, Wan M, Yang Z H, Huang X, and Zeng Y S, J Plast Eng20 (2013) 83.

    Google Scholar 

  14. Jia S F, Zhan L H, and Xu X L, J Plast Eng20 (2013) 80.

    Google Scholar 

  15. Zhan L H, Xu X L, Jiao S F, and Yang L, Chin J Nonferrous Met23 (2013) 2104.

    CAS  Google Scholar 

  16. Zhang J, Deng Y L, Li S Y, Chen Z Y, and Zhang X M, Trans Nonferrous Met Soc China23 (2013) 1922.

    Article  CAS  Google Scholar 

  17. Zhan L H, Tan S G, Huang M H, and Niu J, Adv Mater Res457–458 (2012) 122.

    Article  Google Scholar 

  18. Li J C, Zeng L F, Liu D H, and Zuo J, J Plast Eng19 (2012) 68.

    CAS  Google Scholar 

  19. Jeshvaghani R A, Zohdi H, Shahverdi H R, Bozorg M, and Hadavi S, Mater Charact73 (2012) 8.

    Article  Google Scholar 

  20. Inforzato D J, Costa P R, Fernandez F F, Travessa D N, Mater Res15 (2012) 596.

    Article  CAS  Google Scholar 

  21. Lv Y, and Gang Z, China Met Form Equip Manuf Technol01 (2011) 87.

    Google Scholar 

  22. Tahmasbi V, Ghoreishi M, and Zolfaghari M, J Eng Med231 (2017) 1012.

    Article  Google Scholar 

Download references

Funding

The authors hereby announce that no part of this study was funded by any institutions and/or organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Safari.

Ethics declarations

Conflict of interest

The authors also acknowledge no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, M., Hamidipour, S., Elahi, S.H. et al. Creep Age Forming of Aluminum 7075 Tailor-Machined Blanks: Statistical Modeling, Sensitivity Analysis and Multi-objective Optimization. Trans Indian Inst Met 73, 831–841 (2020). https://doi.org/10.1007/s12666-019-01836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01836-4

Keywords

Navigation