Skip to main content
Log in

Metallurgical and Mechanical Characterization of Double-Sided Friction Stir Welded Thick AA5083 Aluminum Alloy Joints

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this paper, double-sided friction stir welding was employed to join the thick AA5083 alloy plates. The effects of rotational speed, traverse speed and pin length on the join features were evaluated. For this purpose, macro- and microstructural evolutions, and mechanical properties such as microhardness, tensile strength and fracture toughness were studied. According to the results, the stirring action and generated heat led to the fragmentation of Al6(Mn, Fe) particles and dissolution of Al3Mg2 compounds in the stir zone (SZ). The SZ grain size was much smaller than that of the other zones; however, the hardness remained almost the same alongside the joint area (~ 80 HV). An increase in rotational speed at a low traverse speed caused the increase in the grain size of the SZ; however, at a high traverse speed, it did not have any important effect on the average grain size. The highest double-sided failure energy of the joints was obtained by the traverse speed of 80 mm/min, the rotational speed of 1000 rpm and the pin length of 6 mm. In order to study the resistance to crack growth, fracture toughness (three-point bending) test was done. The results show that the KQ obtained for the optimum welded sample is about 11.5% higher than that of the base metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sharma C, Upadhyay V, Dwivedi D K, and Kumar P, Trans Nonferrous Metals Soc China 27 (2017) 493.

    Article  CAS  Google Scholar 

  2. Behmand S A, Mirsalehi S E, Omidvar H, and Safarkhanian M A, Metall Mater Trans B 47 (2016) 2938.

    Article  CAS  Google Scholar 

  3. Birol Y, Mater Sci Technol 29 (2013) 1283.

    Article  CAS  Google Scholar 

  4. Bahrami M, Dehghani K, and Besharati Givi M K, Mater Des 53 (2014) 217.

    Article  CAS  Google Scholar 

  5. Birol Y, and Kasman S, Mater Sci Technol 29 (2013) 1354.

    Article  CAS  Google Scholar 

  6. Mohammadzadeh Jamalian H, Farahani M, Besharati Givi M K, and Aghaei Vafaei M, Int J Adv Manuf Technol 83 (2016) 611.

    Article  Google Scholar 

  7. Thomas W M, Nicholas E D, Needham J C, Church M G, Templesmith P, and Dawes C J. Friction Stir Butt Welding: G.B. Patent, 9125978.8. (1991).

  8. Threadgill P L, Leonard A J, Shercliff H R, and Withers P J, Int Mater Rev 54 (2013) 49.

    Article  Google Scholar 

  9. Hejazi I, and Mirsalehi S E, Trans Nonferrous Metals Soc China 26 (2013) 2313.

    Article  Google Scholar 

  10. Gopi S, and Manonmani K, Sci Technol Weld Join 17 (2013) 601.

    Article  Google Scholar 

  11. Threadgill P L, Ahmed M, Martin J P, Perrett J G, and Wynne B P, Mater Sci Forum 638642 (2010) 1179.

    Article  Google Scholar 

  12. Behmand S A, Mirsalehi S E, Omidvar H, and Safarkhanian M A, Sci Technol Weld Join 20 (2015) 330.

    Article  CAS  Google Scholar 

  13. Bakhtiari Argesi F, Shamsipur A, and Mirsalehi S E, Acta Metallurgica Sinica 31 (2018) 1183.

    CAS  Google Scholar 

  14. Cabibbo M, Forcellese A, El Mehtedi M, and Simoncini M, Mater Sci Eng A 590 (2014) 209.

    Article  CAS  Google Scholar 

  15. Maeda M, Liu H, Fujii H, and Shibayanagi T, Weld World 49 (2005) 69.

    Article  Google Scholar 

  16. Brown R, Tang W, and Reynolds A P, Mater Sci Eng A 513–514 (2009) 115.

    Article  Google Scholar 

  17. Li J Q, and Liu H J, Mater Des 45 (2013) 148.

    Article  CAS  Google Scholar 

  18. Hejazi I, and Mirsalehi S E, Trans Nonferrous Metals Soc China 26 (2016) 676.

    Article  CAS  Google Scholar 

  19. Vijayan S, Raju R, and Rao K S R, Mater Manufact Process 25 (2010) 1206.

    Article  CAS  Google Scholar 

  20. Kumar A R, Varghese S, Sivapragash M A, Procedia Eng 38 (2012) 3951.

    Article  CAS  Google Scholar 

  21. ASTM E8 M-09. Standard Test Methods for Tension Testing of Metallic Materials. ASTM International. West Conshohocken, PA (2013).

  22. ASTM E399-12. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K Ic of Metallic Materials. ASTM International. West Conshohocken, PA (2013).

  23. Mishra R S, and Ma Z Y, Mater Sci Eng R Rep 50 (2005) 1.

    Article  Google Scholar 

  24. Lombard H, Hattingh D G, Steuwer A, and James M N, Eng Fract Mech 75 (2008) 341.

    Article  Google Scholar 

  25. Zohoor M, Besharati Givi M K, and Salami P, Mater Des 39 (2012) 358.

    Article  CAS  Google Scholar 

  26. Sato Y S, Park S H C, and Kokawa H, Metallur Mater Trans A 32 (2001) 3033.

    Article  Google Scholar 

  27. Barmouz M, Besharati Givi M K, and Seyfi J, Mater Character 62 (2011) 108.

    Article  CAS  Google Scholar 

  28. Shigematsu I, Kwon Y J, Suzuki K, Imai T, and Saito N, J Mater Sci Lett 22 (2003) 353.

    Article  CAS  Google Scholar 

  29. Hirata T, Oguri T, Hagino H, Tanaka T, Chung S W, Takigawa Y, and Higashi K, Mater Sci Eng A 456 (2007) 344.

    Article  Google Scholar 

  30. Liu H, Fujii H, Maeda M, and Nogi K, J Mater Process Technol 142 (2003) 692.

    Article  CAS  Google Scholar 

  31. Tochaee E B, Hosseini H M, and Reihani S S, J Alloys Compd 681 (2016) 12.

    Article  Google Scholar 

  32. Mochizuki M, Inuzuka M, Nishida H, Nakata K, and Toyoda M, Sci Technol Weld Join 11 (2013) 366.

    Article  Google Scholar 

  33. Hertzberg R W, Deformation and Fracture Mechanics of Engineering Materials, 4th ed., Wiley, Hoboken (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Mirsalehi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmatian, B., Mirsalehi, S.E. & Dehghani, K. Metallurgical and Mechanical Characterization of Double-Sided Friction Stir Welded Thick AA5083 Aluminum Alloy Joints. Trans Indian Inst Met 72, 2739–2751 (2019). https://doi.org/10.1007/s12666-019-01751-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01751-8

Keywords

Navigation