Skip to main content
Log in

Strengthening and Mechanical Properties of SiC and Graphite Reinforced Al6061 Hybrid Nanocomposites Processed Through Ultrasonically Assisted Casting Technique

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Al6061 alloy-based hybrid nanocomposites reinforced with 2wt% SiC and x wt% of graphite (x = 0, 0.5, 1, 1.5, 2 and 3) nanoparticles are fabricated through ultrasonically assisted casting technique. Microstructure, phases, grain size and fracture surfaces of the hybrid nanocomposites are studied to understand the mechanical properties. Microstructural studies revealed the uniform distribution of SiC and graphite nano-reinforcements in the matrix. The small-scale clusters appeared in the microstructure with the increase in graphite nanoparticles. The grain size, density, hardness and ultimate tensile strength of hybrid nanocomposites decreased with the rise of graphite in the composite material. The yield strength of the hybrid nanocomposites increased with increase in graphite up to 2 wt% and then decreased. SiC and graphite dual phase nanoparticles’ strengthening effect on yield strength was theoretically evaluated using various strengthening mechanisms including porosity effect. Enhancement of yield strength in hybrid nanocomposite due to strengthening mechanisms followed the trend \(\Delta \sigma_{{\Delta {\text{CTE}}}} > \Delta \sigma_{\text{Orowan}} > \Delta \sigma_{\text{HP}} > \Delta \sigma_{\text{load}}\). The predicted yield strength of hybrid nanocomposites obtained using the modified Clyne model and quadratic summation model were close to the experimental values. Fracture surfaces of hybrid nanocomposites exhibited brittle fracture with interdendritic cracking, stepwise facets and particle pull out with the increase in graphite content in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Srivastava N, Chaudhari G P, Mater Sci Eng A 724 (2018) 207.

    Article  Google Scholar 

  2. Zeng X, Yu J, Fu D, Zhang H, Teng J, Vacuum 155 (2018) 375.

    Article  Google Scholar 

  3. Boostani A F, Tahamtan S, Jiang Z Y, Wei D, Yazdani S, Azari R K, Mousavian R T, Xu J, Zhang X, Gong D, Compos Part A Appl Sci Manuf 68 (2015) 163.

    Google Scholar 

  4. Fathy A, Oqail A A, Wagih A, Ceram Int (2018).

  5. Ravindran P, Manisekar K, Kumar S V, Rathika P, Mater Des 51 (2013) 456.

    Article  Google Scholar 

  6. Alexander R, Murthy T S R C, Ravikanth K V, Prakash J, Mahata T, Bakshi S R, Krishnan M, Dasgupta K, Ceram Int 44 (2018) 9838.

    Google Scholar 

  7. Balci Ö, Aǧaoǧullari D, Gökçe H, Duman I, Öveçoǧlu M L, J Alloys Compd 586 (2014) 32.

    Article  Google Scholar 

  8. Reddy A P, Krishna P V, Rao R N, Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst 231(4) (2017) 172.

    Google Scholar 

  9. Govender G, Ivanchev L, Burger H, Mulaba A, Chikwande H, J Compos Mat (2012) 53.

  10. Li Q, Qiu F, Dong B X, Geng R, Lv M M, Zhao Q L, Jiang Q C, Mater Sci Eng A 735 (2018) 317.

    Google Scholar 

  11. Harichandran R, Selvakumar N, Int J Mech Sci 144 (2018) 826.

    Article  Google Scholar 

  12. Harichandran R, Selvakumar N, Arch Civ Mech Eng 16 (2016) 158.

    Article  Google Scholar 

  13. Moghadam A D, Omrani E, Lopez H, Zhou L, Sohn Y, Rohatgi P K, Mater Sci Eng A 702 (2017) 321.

    Google Scholar 

  14. Kannan C, Ramanujam R, J Alloys Compd 751 (2018) 193.

    Article  Google Scholar 

  15. Lü S, Xiao P, Yuan D, Hu K, Wu S, J. Mater. Sci. Technol. 34 (2018) 1617.

    Google Scholar 

  16. Mavhungu S T, Akinlabi E T, Onitiri M A, Varachia F M, Procedia Manuf 7 (2017) 182.

    Google Scholar 

  17. Reddy M P, Shakoor R A, Parande G, Manakari V, Ubaid F, Mohamed A M A, Gupta M, Prog Nat Sci Mater Int 27 (2017) 614.

    Article  Google Scholar 

  18. Gupta R, Chaudhari G P, Daniel B S S, Compos Part B Eng 140 (2018) 34.

    Article  Google Scholar 

  19. Eskin G I, Eskin D G, Ultrason Sonochem 10 (2003) 301.

    Article  Google Scholar 

  20. Khandelwal A, Mani K, Srivastava N, Gupta R, Chaudhari G P, Compos Part B Eng 123 (2017) 73.

    Article  Google Scholar 

  21. Sharma P, Sharma S, Khanduja D, Part Sci Technol 34 (2016) 22.

    Article  Google Scholar 

  22. Reddy A P, Krishna P V, Rao R N, Proc Inst Mech Eng Part N J Nanomater Nanoeng. Nanosyst 231 (2017) 172.

    Google Scholar 

  23. Zhang X, Li S, Pan B, Pan D, Zhou S, Yang S, Jia L, Kondoh K, J Alloys Compd 764 (2018) 288.

    Google Scholar 

  24. Aghdam M K H, Mahmoodi M J, Ansari R, J Alloys Compd 739 (2018) 177.

    Google Scholar 

  25. Bisht A, Srivastava M, Kumar R M, Lahiri I, Lahiri D, Mater Sci Eng A 695 (2017) 28.

    Article  Google Scholar 

  26. Xiao P, Gao Y, Yang C, Liu Z, Li Y, Xu F, Mater Sci Eng A 710 (2018) 259.

    Article  Google Scholar 

  27. Mirza F A, Chen D L, Materials (Basel) 8 (2015) 5153.

    Article  Google Scholar 

  28. Chen B, Shen J, Ye X, Jia L, Li S, Umeda J, Takahashi M, Kondoh K, Acta Mater 140 (2017) 325.

    Article  Google Scholar 

  29. Srivastava N, Chaudhari G P, Mater Sci Eng A 651 (2016) 247.

    Google Scholar 

  30. Zhang Z, Chen D L, Mater Sci Eng A 483–484 (2008) 152.

    Google Scholar 

  31. Deng K, Shi J, Wang C, Wang X, Wu Y, Nie K, Wu K, Compos Part A Appl Sci Manuf 43 (2012) 1284.

    Google Scholar 

  32. Park J G, Keum D H, Lee Y H, Carbon N Y 95 (2015) 698.

    Article  Google Scholar 

  33. Talwar D N, Mater Sci Eng B Solid State Mater Adv Technol 226 (2017) 9.

    Article  Google Scholar 

  34. Tsang D K L, Marsden B J, Fok S L, Hall G, Carbon N Y 43 (2005) 2906.

    Article  Google Scholar 

  35. Ramakrishnan N, Acta Mater 44 (1996) 77.

    Article  Google Scholar 

  36. Alizadeh M, Beni H A, Mater Res Bull 59 (2014) 294.

    Article  Google Scholar 

  37. Zadeh A S, Mater Sci Eng A 531 (2012) 118.

    Google Scholar 

  38. Wang M, Chen D, Chen Z, Wu Y, Wang F, Ma N, Wang H, Mater Sci Eng A 590 (2014) 254.

    Google Scholar 

  39. Kim C S, Sohn I, Nezafati M, Ferguson J B, Schultz B F, Gohari Z B, Rohatgi P K, Cho K, J Mater Sci 48 (2013) 4204.

    Google Scholar 

  40. Yao X, Zhang Z, Zheng Y F, Kong C, Quadir M Z, Liang J M, Chen Y H, Munroe P, Zhang D L, J Mater Sci Technol 33 (2017) 1030.

    Google Scholar 

  41. Ramkumar K R, Sivasankaran S, Alaboodi A S, J Alloys Compd 709 (2017) 141.

    Article  Google Scholar 

  42. Ozkaya S, Canakci A, Powder Technol 297 (2016) 16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Prasad Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, A.P., Krishna, P.V. & Rao, R.N. Strengthening and Mechanical Properties of SiC and Graphite Reinforced Al6061 Hybrid Nanocomposites Processed Through Ultrasonically Assisted Casting Technique. Trans Indian Inst Met 72, 2533–2546 (2019). https://doi.org/10.1007/s12666-019-01723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01723-y

Keywords

Navigation