Skip to main content
Log in

On Development of Functionally Graded Material Through Fused Deposition Modelling Assisted Investment Casting from Al2O3/SiC Reinforced Waste Low Density Polyethylene

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The recycling of packaging materials such as low density polyethylene (LDPE) into useful product is one of the challenging tasks. Since waste LDPE has some issues like low mechanical strength and thermal degradation; some studies have been reported in recent past to improve these properties with ceramic/metallic reinforcements. In this work reusability of LDPE has been ascertained as functionally graded material (FGM) through aluminum (Al) matrix based investment casting (IC). This study highlights the use of SiC and Al2O3 as reinforcement in LDPE for IC applications as a novel method for development of FGM. The master patterns for IC were prepared from reinforced LDPE based feed stock filament (prepared on conventional screw extruder) on open source fused deposition modelling setup. The in-house prepared filament wire was subjected to mechanical and thermal testing to ensure recyclability and stability of the material. The photo micrographs and SEM images were collected to ensure the dispersion of SiC and Al2O3 reinforcements in Al based FGM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao L, and Choi P, Mater Manuf Process 21 (2006) 135.

    CAS  Google Scholar 

  2. Chinnadurai T, Arungalai Vendan S, Rusu C C, and Scutelnicu E, Mater Manuf Process 69141 (2017) 1.

    Google Scholar 

  3. Nam G J, Yoo J H, and Lee J W, J Appl Polym Sci 96 (2005) 1793.

    CAS  Google Scholar 

  4. Li S, Xiao M, Guan Y, Wei D, Xiao H, and Zheng A, Eur Poly J 48 (2012) 362.

    CAS  Google Scholar 

  5. Ozdemir M, and Floros J D, Crit Rev Food Sci Nutr 44 (2004) 185.

    CAS  Google Scholar 

  6. Al-Salem S M, Lettieri P, and Baeyens J, Waste Manage 29 (2009) 2625.

    CAS  Google Scholar 

  7. USEPA, Municipal Solid Waste in the United States: (2000) ‘Facts and Figures’ Executive Summary. Office of Solid Waste Management and Emergency Response (5305W), EPA530-S-02-001, June (2002).

  8. USEPA, Municipal Solid Waste in the United States: (2007) ‘Facts and Figures’ Executive Summary. Office of Solid Waste Management and Emergency Response (5306P), EPA530-R-08-010, November (2008).

  9. Zia K M, Bhatti H N, and Bhatti I A, React Funct Polym 67 (2007) 675.

    CAS  Google Scholar 

  10. Howard G T, Int Biodeterior Biodegrad 49 (2002) 245.

    CAS  Google Scholar 

  11. Scheirs J, Polymer Recycling: Science, Technology and Applications. Wiley, Chichester (1998).

    Google Scholar 

  12. Lei Y, Wu Q, Yao F, and Xu Y, Compos Part Appl Sci Manuf 38 (2007) 1664.

    Google Scholar 

  13. Marzouk O Y, Dheilly R M, and Queneudec M, Waste Manage 27 (2007) 310.

    CAS  Google Scholar 

  14. James A R, Sbarski I, Masood S H, and Kosior E, J Polym Eng 27 (2007) 55.

    CAS  Google Scholar 

  15. La Mantia FP and Dintcheva N T, Macromol Rapid Commun 26 (2005) 361.

    Google Scholar 

  16. Sanchez-Soto M, Rossa, A, Sanchez A J, and Gamez-Perez J, Waste Manage 28 (2008) 2565.

    CAS  Google Scholar 

  17. Ferrando H E, Cribier J F, Vega D, Bosch-Masgrau F, Sánchez-Soto M, and LIMaspoch M, Polym Recycl 6 (2001) 187.

    Google Scholar 

  18. Cruz F, Lanza S, Boudaoud H, Hoppe S, and Camargo M, August Annual International Solid Freeform Fabrication SymposiumAn Additive Manufacturing Conference, Austin, Texas (USA), 2015, pp 10–12.

  19. EPIC (2003) Environmental and Plastics Industry Council, Management of Plastics in EOL Electronics. Special News and Views Report.

  20. Singh R, Singh N, Fabbrocino F, Fraternali F, and Ahuja I P S, Compos Part B Eng 105 (2016) 23.

    CAS  Google Scholar 

  21. Singh R, and Singh S, Mater Today Proc 2 (2015) 1876.

    Google Scholar 

  22. Singh R, Singh N, Bedi P, Ahuja IPS, Polymer Single-Screw Extrusion With Metal Powder Reinforcement. Elsevier, Amsterdam (2016).

    Google Scholar 

  23. Lv F, Yao D, Wang Y, Wang C, Zhu P, and Hong Y, Compos Part B Eng 77 (2015) 232.

    CAS  Google Scholar 

  24. Singh K, Nanda T, and Mehta R, Mater Manuf Process 6914 (2017) 1.

    Google Scholar 

  25. Tan C L Azmi A I, and Muhammad N, Mater Manuf Process 31 (2016) 1366.

    CAS  Google Scholar 

  26. Latha B, and Senthilkumar V S, Mater Manuf Process 25 (2010) 817.

    CAS  Google Scholar 

  27. Chockalingam P, Kuang K C, and Vijayaram T R, Mater Manuf Process 28 (2013) 1071.

    CAS  Google Scholar 

  28. Le M T, and Huang S C, Mater Manuf Process 6914 (2015) 1.

    Google Scholar 

  29. Raj D S, and Karunamoorthy L, Mater Manuf Process 31 (2016) 587.

    CAS  Google Scholar 

  30. Srinivasan T, Palanikumar K, Rajagopal K, and Latha B, Mater Manuf Process 32 (2017) 226.

    CAS  Google Scholar 

  31. Liu J, Boo W J, Clearfield A, and Sue H J, Mater Manuf Process 21 (2006) 143.

    CAS  Google Scholar 

  32. Palanikumar K, Prakash S, and Shanmugam K, Mater Manuf Process 23 (2008) 858.

    CAS  Google Scholar 

  33. Palanikumar K, Mater Manuf Process 25 (2010) 1059.

    CAS  Google Scholar 

  34. Palanikumar K, Latha B, Senthilkumar V S, and Davim J P, Mater Manuf Process 27 (2012) 297.

    CAS  Google Scholar 

  35. Chaudhary V, and Gohil P P, Mater Manuf Process 31 (2016) 960.

    CAS  Google Scholar 

  36. Satheesh Raja R, and Manisekar K, Mater Des 89 (2016) 884.

    CAS  Google Scholar 

  37. Selvam R, Karunamoorthy L, and Arunkumar N, Mater Manuf Process 32 (2017) 700.

    CAS  Google Scholar 

  38. Gu L, and Ozbakkaloglu T, Waste Manage 51 (2016) 19.

    Google Scholar 

  39. Pacheco-Torgal F, Ding Y, and Jalali S, Constr Build Mater 30 (2012) 714.

    Google Scholar 

  40. Saikia N, and de Brito J, Constr Build Mater 34 (2012) 385.

    Google Scholar 

  41. Siddique R, Khatib J, and Kaur I, Waste Manage 28 (2008) 1835.

    CAS  Google Scholar 

  42. Singh N, Hui D, Singh R, Ahuja I P S, Feo L, and Fraternali F, Compos Part B Eng 115 (2017) 409.

    CAS  Google Scholar 

  43. Basalp D, and Tihminlioğlu F, J Therm Anal Calorim 94 (2008) 757.

    CAS  Google Scholar 

  44. Pal K, Panwar V, Friedrich S, and Gehde M, Mater Manuf Process 31 (2016) 372.

    CAS  Google Scholar 

  45. Luo J, Liang Y, Yang J, Niu H, Dong J Y, and Han C C, Polymer 52 (2011) 4590.

    CAS  Google Scholar 

  46. Indian Patent Application No. 2847/DEL/2013, Dated 26-09-2013, Development of Metal Matrix Composite (MMC) by Two Stages Hybridization of Fused Deposition Modelling (FDM) and Investment Casting (IC).

Download references

Acknowledgements

The authors are thankful to Department of Science and Technology (GoI) for financial support (DST/TSG/NTS/2014/104) for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupinder Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Singh, R. & Ahuja, I.P.S. On Development of Functionally Graded Material Through Fused Deposition Modelling Assisted Investment Casting from Al2O3/SiC Reinforced Waste Low Density Polyethylene. Trans Indian Inst Met 71, 2479–2485 (2018). https://doi.org/10.1007/s12666-018-1378-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1378-9

Keywords

Navigation