Skip to main content

Advertisement

Log in

A Review of Automotive Engine Friction Reduction Opportunities Through Technologies Related to Tribology

  • Review Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Reducing fuel consumption in automotive engines is a key enabler for CO2 emission reduction. Tribology plays a significant role in reducing parasitic losses in an engine and thus reducing fuel consumption. The paper reviews frictional losses in critical engine components and the lubrication regime(s) they operate. This reveals the opportunities for friction reduction at cylinder bore/piston contact, valvetrain, and bearings through deposition of low friction coatings, improved surface finish, surface modifications, and low friction engine oil. The paper also attempted to capture implementation of some of these friction reduction concepts in recent engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pinkus O, and Wilcock D F, Strategy for energy conservation through tribology, ASME, New York (1977).

    Google Scholar 

  2. Kiovsky T E, Yates N C, and Bales J R, Lub Eng 50 (1994) 307.

    Google Scholar 

  3. Gangopadhyay A K in chapter contribution to Coating Technology for Vehicle Applications, (ed) Cha S C, and Erdemir A, Springer, New York (2015), p 63.

  4. Matz M M, and Kennedy M, Therm Spray Bull 4 (2011) 20.

    Google Scholar 

  5. Martínez D L, Valverde M, Rabuté R, and Ferrarese A, MTZ 71 (2010) 26.

    Article  Google Scholar 

  6. Wakabayashi R, Mochiduki K, and Yoshida H, SAE paper no. 2009-01-0188 (2009).

  7. Paulo J R, Mordente P J R, and Bruno R A, SAE paper no. 2009-36-0128 (2009).

  8. Kennedy M, Hoppe S, and Esser J, MTZ, 73 (2012), 40.

    Article  Google Scholar 

  9. Kennedy M, Hoppe S, and Esser J, MTZ, 75 (2014), 25.

    Google Scholar 

  10. Aiyoshizawa E, and Hori K, Internationales Wiener Motorensymposium, 35 (2014)

  11. Frommer A, Deuß T, Ehnis H,and Künzel R, MTZ 77 (2016) 48.

    Article  Google Scholar 

  12. Gand B, MTZ, 72 (2011) 34.

    Google Scholar 

  13. Morawitz U, Mehring J, and Schamm L, SAE paper no. 2013-01-0292 (2013).

  14. Werner P, Schommers J, Breitbach H, and Spengel C, MTZ 72 (2011) 22.

    Article  Google Scholar 

  15. Steinparzer F, Unger H, Brüner T, and Kannenberg D, Internationales Wiener Motorensymposium 32 (2011).

  16. Hwan, K, Hwang I, Lee H, Park H, Choi H, Lee K, Kim W, Kim H, Han B, Lee J, Shin B, and Chae D, SAE paper no 2016-01-0667 (2016).

  17. Furumata S, Kakinuma T, and Tochiki H, SAE paper no 2016-01-1012 (2016).

  18. Ichikawa H, Nakada N, and Yajima J, SAE paper no 2009-01-1067 (2009).

  19. Galda L, Pawlus P, Sep J, Tribol Int 42 (2009) 1505.

    Article  Google Scholar 

  20. Grabon W, Koszela W, Pawlus P, and Ochwat S, Tribol Int 61 (2013) 102.

    Article  Google Scholar 

  21. Braun D, Greiner C, Schneider J, and Gumbsch P, Tribol Int 77 (2014) 142.

    Article  Google Scholar 

  22. Vladescu S C, Olver A V, Pegg I G, and Reddyhoff T, Tribol Int 82 (2015) 28.

    Article  Google Scholar 

  23. Segu D Z, and Hwang P, Ind Lubr Technol 68 (2016) 116.

    Article  Google Scholar 

  24. Urabe M, Takakura T, Metoki S, Yanagisawa M, and Murata H, SAE paper no. 2014-01-1661 (2014).

  25. Hua X, Sun J, Zhang P, Ge H, Fu Y, Ji J, and Yin B, Tribol Int 98 (2016) 190.

    Article  Google Scholar 

  26. Howell-Smith S, Rahnejat H, King P D, and Dowson D, Proc Inst Mech E Part D J Automobile Eng 228 (2014) 391.

    Google Scholar 

  27. Golloch R, Merker G P, Kessen U, and Brinkmann S, in 14th International Colloquium Tribology, Jan 13–15 (2004), Tribology and Lubrication Engineering, (ed) Wilfred Bartz, Vol 1.

  28. Witzenburg G, Wards Auto, June 15, (2016).

  29. Ando S, and Takashima K, Internationales Wiener Motorensymposium 37 (2016).

  30. Hill S H, Kantola T C, BrownJ R, and Hamelink J C, SAE paper no 950938 (1995).

  31. Deuss T, Ehnis H, Freier R, and Kunzel R, MTZ 71 (2010) 7.

    Google Scholar 

  32. Kim Y, Park H, and An J-U, SAE paper no 2011-01-1401 (2011).

  33. Suzuki N, and Hikasa A, SAE paper no 2012-32-0090 (2012).

  34. Birch S, Automotive Engineering Online, September 16 (2010).

  35. Ogihara H, SAE paper no 2005-01-1647 (2005).

  36. Witzenburg G, Wards Auto, Apr 1, (2013).

  37. Press release, http://investor.federalmogul.com/phoenix.zhtml?c=97066&p=irol-newsArticle_Print&ID=1449403&highlight=, July 20, 2010.

  38. Hanke W, Ando H, Fahr M, and Voigt M, MTZ 75 (2014) 26.

    Article  Google Scholar 

  39. Adam A, Prefot M, and Wilhelm M, MTZ, 71 (2012) 22.

    Article  Google Scholar 

  40. Schreer K, Roth I, Schneider S, and Ehnis H, in Proceedings of the ASME 2013 Internal Combustion Engine Division Fall Technical Conference ICEF2013 October 13–16, 2013, Dearborn, Michigan, USA.

  41. Kwang-soo Kim K-S, Shah P, Takiguchi M, and Aoki S, SAE paper no 2009-01-0193 (2009).

  42. Shimada Y, Abou S, Okita K, and Chuubachi M, SAE paper no 2006-01-0618 (2006).

  43. Witzenburg, G, Wards Auto, Apr 1, (2013).

  44. Gangopadhyay A K, McWatt D G, Zdrodowski R J, Simko S J, Matera S, Sheffer K, and Furby R S, Tribol Trans 55 (2012) 99.

    Article  Google Scholar 

  45. Mabuchi Y, Hamada T, Izumi H, Yasuda Y, and Kano M, SAE paper no 2007-01-1752 (2007).

  46. http://www.nissan-global.com/EN/NEWS/2006/_STORY/060822-01-e.html, August 22, 2006.

  47. Crabb D, Fleiss M, Larsson J-E, Somhorst J, MTZ 74 (2013) 4.

    Article  Google Scholar 

  48. Okuda S, Dewa T, and Sagawa T, SAE paper no 2007-01-1979 (2007).

  49. Shinyoshi T, Fuwa Y, and Ozaki Y, SAE paper no 2007-01-1969 (2007).

  50. Haque T, Morina A, Neville A, Kapadia R, and Arrowsmith S, Tribol Int 40 (2007) 1603.

    Article  Google Scholar 

  51. Vengudusamy B, Greene J H, Lamb G D, and Spikes H A, Tribol Int 54 (2012) 68.

    Article  Google Scholar 

  52. Keunecke M, Bewilogua K, Becker J, Gies A, and Grischke M, Surf Coat Technol 207 (2012) 270.

    Article  Google Scholar 

  53. Tiermann C, Kalenborn M, Orlowsky K, Steffens C, and Bick W, MTZ, 68 (2007) 286.

    Google Scholar 

  54. Baubet Y, Pisani C, Carden P, Molenaar L, and Reedman A, SAE Paper Number 2014-01-1637 (2014).

  55. Jacobs, C. Forecast: Changeable, with Rising Pressure. Lubes’N’Greases, 22 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Gangopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangopadhyay, A. A Review of Automotive Engine Friction Reduction Opportunities Through Technologies Related to Tribology. Trans Indian Inst Met 70, 527–535 (2017). https://doi.org/10.1007/s12666-016-1001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-1001-x

Keywords

Navigation