Skip to main content
Log in

Kinetics study on non-isothermal crystallization of Cu50Zr50 metallic glass

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this paper, the crystallization kinetics of melt-spun Cu50Zr50 amorphous alloy ribbons has been investigated using differential scanning calorimetry. Moreover, the Kissinger, Ozawa and isoconversional approaches have been used to obtain the crystallization kinetic parameters. As shown in the results, the onset crystallization activation energy E x is less than crystallization peak activation energy E p. The local activation energy E α increases at the crystallized volume fraction α < 0.2 and decreases at the rest, which suggests that crystallization process is increasingly hard (α < 0.2) at first, after which it become increasingly easy (α > 0.2). The nucleation activation energy E nucleation is greater than grain growth activation energy E growth, indicating that the nucleation is harder than growth. In terms of the local Avrami exponent n(α), it lies between 1.27 and 8, which means that crystallization mechanism in the non-isothermal crystallization is interface-controlled one- two- or three-dimensional growth with different nucleation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Inoue A, Zhang W, Zhang T, and Kurosaka K, J Non-cryst. Solids 304 (2002) 200–209.

    Google Scholar 

  2. Inoue A, Zhang W, Zhang T, Kurosaka K, Acta Mater 49 (2001) 2645–2652.

    Article  Google Scholar 

  3. Inoue A, Zhang W, Form Mater Trans 43 (2002) 2921–2925.

    Article  Google Scholar 

  4. Pi J, Ye P, Wu J, Zhang L, He XC, Trans Nonferrous Met Soc China 23 (2013) 2989–2993.

    Article  Google Scholar 

  5. Deng L, Zhou B, Yang H, Jiang X, Jiang B, Zhang X, J Alloys Compd 632 (2015) 429–434.

    Article  Google Scholar 

  6. Gu Y, Zheng Z, Niu S, Ge W, Wang Y, J Non-Cryst Solids 380 (2013) 135–140.

    Google Scholar 

  7. Zhu Z W, Zhang H F, Sun W S, Ding B Z, Hu Z Q, Scr Mater 54 (2006) 1145–1149.

    Article  Google Scholar 

  8. Xu D, Lohwongwatana B, Duan G, Johnson W L, Acta Mater 52 (2004) 2621–2624.

    Article  Google Scholar 

  9. Kwon O J, Lee Y K, Park S O, Lee J C, Kim Y C, Fleury E, Mater Sci Eng A 449 (2007) 169–171.

    Article  Google Scholar 

  10. Guo N B, Tang C Y, Wang J, Hu C H, Zhou H Y, J Alloys Compd 629 (2015) 11–15.

    Article  Google Scholar 

  11. An W K, Xiong X, Liu Y, Li J H, Cai A H, Luo Y, Li T L, Li X S, J Alloys Compd 486 (2009) 288–292.

    Article  Google Scholar 

  12. Yuan Z Z, Chen X D, Wang B X, Chen Z J, J Alloys Compd 399 (2005) 166–172.

    Article  Google Scholar 

  13. Yang Y J, Xing D W, Shen J, Sun J F, Wei S D, He H J, Mccartney D G, J Alloys Compd 415 (2006) 106–110.

    Article  Google Scholar 

  14. Hu L, Ye F, J Alloys Compd 557 (2013) 160–165.

    Article  Google Scholar 

  15. Li X P, Yan M, Wang J Q, Huang H, Kong C, Schaffer G B, Qian M, J Alloys Compd 530 (2012) 127–131

    Article  Google Scholar 

  16. Zou L M, Li Y H, Yang C, Qu S G, Li Y Y, J Alloys Compd 553 (2013) 40-–47.

    Article  Google Scholar 

  17. Wang Y, Xu K, Li Q, J Alloys Compd 540 (2012) 6–15.

    Article  Google Scholar 

  18. Qiao J C, Pelletier J M, J Non-Cryst Solids 357 (2011) 2590–2594.

    Article  Google Scholar 

  19. Fernández R, Carrasco W, Zúñiga A, J Non-Cryst Solids 356 (2010) 1665–1669.

    Article  Google Scholar 

  20. Xie G, Louzguine-Luzgin D V, Zhang Q S, Zhang W, Inoue A, J Alloys Compd 483 (2009) 24–27.

    Article  Google Scholar 

  21. Wu J, Pan Y, Pi J, J Therm Anal Calorim 115 (2014) 267–274.

    Article  Google Scholar 

  22. Ou X, Zhang G Q, Xu X, Wang L N, Liu J F, Jiang J Z, J Alloys Compd 441 (2007) 181–184.

    Article  Google Scholar 

  23. Kissinger H E, Anal Chem 29 (1957) 1702–1706.

    Article  Google Scholar 

  24. Ozawa T, Bull Chem Soc Jpn 38 (1965) 1881–1886.

    Article  Google Scholar 

  25. Wu J L, Pan Y, Huang J D, Pi J H, Thermochim Acta 552 (2013) 15–22.

    Article  Google Scholar 

  26. Kalay I, Kramer M, Napolitano R, Metall Mater Trans A 46 (2015) 3356–3364

    Article  Google Scholar 

  27. Cheng S R, Wang C J, Ma M Z, Shan D B, Guo B, Thermochim Acta 587 (2014) 11–17.

    Article  Google Scholar 

  28. Akahira T, Sunose T, Res Rep Chiba Inst Technol (Sci Technol) 16 (1971) 22–31.

    Google Scholar 

  29. Ozawa T, J Therm Anal 2 (1970) 301–324.

    Article  Google Scholar 

  30. Lu W, Yan B, Huang W, J Non-Cryst Solids 351 (2005) 3320–3324.

    Article  Google Scholar 

  31. Yuan Z Z, Chen X D, Wang B X, Wang Y J, J Alloys Compd 407 (2006) 163–169.

    Article  Google Scholar 

  32. Jiang X, Zhang H, Wen Q, Zhong Z Y, Tang X, Vacuum 77 (2005) 209–215.

    Article  Google Scholar 

  33. Legg A, Schroers J, Busch R, Acta Mater 55 (2007) 1109–1116.

    Article  Google Scholar 

  34. Illeková E, Malizia F, Ronconi F, Thermochim Acta 282 (1996) 91–100.

    Article  Google Scholar 

  35. Yan Z J, He S R, Li J R, Zhou Y H, J Alloys Compd 368 (2004) 175–179.

    Article  Google Scholar 

  36. Gao Y L, Shen J, Sun J F, Wang G, Xing D W, Xian H Z, Zhou B D, Mater Lett 57 (2003) 1894–1898.

    Article  Google Scholar 

  37. Ouyang Y F, Wang L Y, Chen H M, Cheng X Y, Zhong X P, Feng Y P, J Non-Cryst Solids 354 (2008) 5555–5558.

    Article  Google Scholar 

  38. Christian J W, The Theory of Transformations in Metals and Alloys. Pergamon, Oxford (2002).

    Google Scholar 

  39. Kooi B J, Phys Rev B 70 (2004) 224108.

    Article  Google Scholar 

  40. Jiang W X, Zhang B, Sci China Phys Mech 57 (2014) 1870–1874.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Natural Science Foundation of China (Nos. 51371133, 51401156, 51301125 and 51671151), the Science and Technology Program of Shaanxi Province (No. 2016KJXX-87) and the President fund of Xi’an Technological University (No. XAGDXJJ1307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengyun Jian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Jian, Z. Kinetics study on non-isothermal crystallization of Cu50Zr50 metallic glass. Trans Indian Inst Met 70, 1879–1885 (2017). https://doi.org/10.1007/s12666-016-0992-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0992-7

Keywords

Navigation