Skip to main content
Log in

Breakage Mechanism of Mg During Ball Milling with NaCl, KCl and Urea for Nanopowder Production

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this research, ball milling of magnesium fillings with NaCl, KCl and urea was investigated as a simple way to produce Mg nanoparticles. Effects of feed geometry and milling time on crush mechanism and product size were determined. Optical, scanning and transmission electron microscopes were used to study the morphology of the products. Spherical charge particles were milled under argon atmosphere with 10 wt% cuboidal NaCl at 250 rpm for 50 h. With ball to powder ratio of 10:1, the average diameter of the product was 17 nm. Addition of NaCl changed the breakage mechanism from ductile–ductile to ductile–brittle, reduced particle size, stopped agglomeration and prevented the undesirable adhesion of particles to walls and balls of the milling machine. Using more than 70 wt% NaCl resulted in conversion of the mechanism from ductile–brittle to brittle–brittle. This resulted in fracture of the particles, but reduced the yield of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Feldheim D L, and Foss C A, Metal Nanoparticles, Marcel Dekker Inc, Basel (2002).

    Google Scholar 

  2. Kainer K U, MagnesiumAlloys and Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003).

    Book  Google Scholar 

  3. Denisa A, Sellier E, Aymonier C, and Bobet J L, J Alloys Compd 476 (2009) 152.

    Article  Google Scholar 

  4. Song M R, Chen M, and Zhang Z J, Mater Charact 59 (2008) 514.

    Article  Google Scholar 

  5. Bhakta G, Mitra S, and Maitra A, Biomaterials 26 (2005) 2163.

    Article  Google Scholar 

  6. Li C, Cheng F, Ji W, Tao Z, and Chen J, Nano Res 2 (2009) 713.

    Article  Google Scholar 

  7. Samoshina M, Aksenov A, and Kaevitser E, Rev Adv Mater Sci 18 (2008) 305.

    Google Scholar 

  8. Shao H, Wang Y, Xu H, and Li X, Mater Sci Eng B 110 (2004) 221.

    Article  Google Scholar 

  9. Phuoc T X, Howard B H, Martello D V, Soong Y, and Chyu M K, Opt Lasers Eng 46 (2008) 829.

    Article  Google Scholar 

  10. Haas I, and Gedanken A, J R Soc Chem 15 (2008) 1795.

    Google Scholar 

  11. Kooi B J, Palasantzas G, and Hosson J T M D, Appl Phys Lett 89 (2006) 161914.

    Article  Google Scholar 

  12. Rosenkranz S, Breitung-Faes S, and Kwade A, Powder Technol 212 (2011) 224.

    Article  Google Scholar 

  13. Benjamin J S, Met Powder Rep 45 (1990) 122.

    Article  Google Scholar 

  14. Lee P Y, Yang J L, and Lin H M, J Mater Sci 33 (1998) 235.

    Article  Google Scholar 

  15. El-Eskandarany M S, Mechanical Alloying for Fabrication of Advanced Engineering Materials, Noyes, New York (2001).

    Google Scholar 

  16. Suryanarayana C, Prog Mater Sci 46 (2001) 1.

    Article  Google Scholar 

  17. Zhang Y F, Lu L, and Yap S M, J Mater Process Technol 89–90 (1999) 260.

    Article  Google Scholar 

  18. Bodaghi M, Zolfonoon H, Tahriri M, and Karimi M, Solid State Sci 11 (2009) 496.

    Article  Google Scholar 

  19. Alinejad B, and Mahmoodi K, Int J Hydrog Energy 34 (2009) 7934.

    Article  Google Scholar 

  20. Fahimpour V, and Sadrnezhaad S K, Mater Lett 85 (2012) 128.

    Article  Google Scholar 

  21. Zhang Y M, and Kavetsky A, Int J Miner Process 39 (1993) 41.

    Article  Google Scholar 

  22. Fuerstenau D W, Abouzeid A Z M, and Phatak P B, Int J Miner Process 97 (2010) 52.

    Article  Google Scholar 

  23. Ozcan O, and Benzer H, Miner Eng 49 (2013) 103.

    Article  Google Scholar 

  24. Rajamani R K, and Guo D, Int J Miner Process 34 (1992) 103.

    Article  Google Scholar 

  25. Hogg R, Powder Technol 105 (1999) 135.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate vice-president of research and technology of Sharif University of Technology for his persuasion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sadrnezhaad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahimpour, V., Sadrnezhaad, S.K. Breakage Mechanism of Mg During Ball Milling with NaCl, KCl and Urea for Nanopowder Production. Trans Indian Inst Met 70, 1783–1793 (2017). https://doi.org/10.1007/s12666-016-0979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0979-4

Keywords

Navigation