Skip to main content
Log in

Study on Effect of Process Variables on Distributed Compositional Characteristics in Metallurgically and Mechanically Bonded Claddings

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In surface modification applications, cermets such as Cr3C2–NiCr are used to enhance the wear resistance of the substrate. Friction surfaced cladding is a recently developed solid-state surface modification process in which the deposition of the clad layer is accomplished below it’s melting temperature, so that degradation of the substrate is minimized. The present investigation discusses the friction surfaced cladding of Cr3C2–NiCr using consumable die steel rod. It was observed from the micrographs, that with the suitable combination of tool plunging rate (plunging speed), tool rotational speed and traverse rate, successful cladding of Cr3C2–NiCr was achieved. A plan of full factorial experiment was followed for determining the process variables for the successful deposition of Cr3C2–NiCr clad layer with the substrate. A mathematical model was developed to predict the composite clad dimensions and microhardness with respect to the process variables. Depending upon the process parameter, it was observed that the hardness of the clad and clad geometrical feature varied. The microstructural analysis exhibited sound and uniform bonding of clad layer to the substrate and near uniform distribution of Cr3C2–NiCr. Desirability based multi-response optimization procedure was followed to arrive at optimized Cr3C2–NiCr clad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gandra J, Miranda R M, and Vilaça P, J Mater Process Technol 212 (2012) 1676.

    Article  Google Scholar 

  2. Vilaça P, Gandra J, and Vidal C, in  Aluminium Alloys - New Trends in Fabrication and Applications (2012) p 159.

  3. Bedford G M, Metals Mater 6 (1990) 702.

    Google Scholar 

  4. Macedo M L K, Pinheiro G A, dos Santos J F, and Strohaecker T R, Welding Int 6 (2014) 422.

    Google Scholar 

  5. Gandra J, Vigarinho P, Pereira D, Miranda R M, Velhinho A, and Vilaça P, Mater Des 52 (2013) 373.

    Article  Google Scholar 

  6. Pereiraa D, Gandra J, Pamies-Teixeiraa J, Miranda R M, and Vilaça P, J Mater Process Technol 214 (2014) 2858.

    Article  Google Scholar 

  7. Gandra J, Pereiraa D, Miranda R M, Silva R J C, and Vilaça P, Surf Coat Technol 223 (2013) 32.

    Article  Google Scholar 

  8. Lin Y C, and Wang S W, Tribol Int 36 (2003) 1.

    Article  Google Scholar 

  9. Zhang S, Zohu J, Guo B, Zhou H, and Pu Y, Mater Sci Eng A 491 (2008) 47.

    Article  Google Scholar 

  10. Gandra J, Pereira D, Miranda R M, and Vilaçaca P, Procedia CIRP 7 (2013) 341.

    Article  Google Scholar 

  11. Puli R, and Janaki Ram G D, Mater Charact 74 (2012) 49.

    Article  Google Scholar 

  12. Puli R, and Janaki Ram G D, Surf Coat Technol 207 (2012) 310.

    Article  Google Scholar 

  13. Puli R, and Janaki Ram G D, Corros Sci 62 (2012) 95.

    Article  Google Scholar 

  14. Puli R, and Janaki Ram G D, Surf Coat Technol 209 (2012) 1.

    Article  Google Scholar 

  15. Rafi H K, Janaki Ram G D, Phanikumar G, and Rao K P, Mater Des 32 (2011) 82.

    Article  Google Scholar 

  16. Rao K P, Damodaram R, Rafi H K, Janaki Ram G D, Reddy G M, and Nagalakshmi R, Mater Charact 70 (2012) 111.

    Article  Google Scholar 

  17. Rao K P, Sankar A, Rafi H K, Janaki Ram G D, and Reddy G M, Int J Adv Manuf Technol 65 (2013) 755.

    Article  Google Scholar 

  18. Dilip J J S, Rafi H K, and Janaki Ram G D, Trans Indian I Met 64 (2011) 27.

  19. Puli R, Kumar E N, and Janaki Ram G D, Trans Indian I Met 64 (2011) 41.

  20. Chandrasekaran M, Batchelor A W, and Jana S, J Mater Sci 33 (1998) 2709.

    Article  Google Scholar 

  21. Tokisue H, Katoh K, Asahina T, and Ushiyama T, in Structures and Mechanical Properties of Multilayer Friction Surfaced Aluminum Alloys, Report of the Research Institute of Industrial Technology, Nihon University Number 78 (2005).

  22. Sakihama H, Tokisue H, and Katoh K, Mater Trans 44 (2003) 2688.

    Article  Google Scholar 

  23. Kramer de Macedo M L, Pinheiro G A, dos Santos J F, and Strohaecker T R, Weld Int 24 (2010) 422.

    Article  Google Scholar 

  24. Vitanov V I, Javaid N, and Stephenson D J, Surf Coat Technol 204 (2010) 3501.

  25. Gandra J, Krohn H, Miranda R M, Vilaca P, Quintino L, and dos San J F, J Mater Process Technol 214 (2014) 1062.

    Article  Google Scholar 

  26. Rafi H K, Janaki Ram G D, Phanikumar G, and Rao K P, Mater Sci Forum 638–642 (2010) 864.

    Article  Google Scholar 

  27. Voutchkov I, Jaworski B, Vitanov V I, and Bedford G M, Surf Coat Technol 141 (2001) 26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Pandey, C., Mahapatra, M.M. et al. Study on Effect of Process Variables on Distributed Compositional Characteristics in Metallurgically and Mechanically Bonded Claddings. Trans Indian Inst Met 70, 1805–1815 (2017). https://doi.org/10.1007/s12666-016-0977-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0977-6

Keywords

Navigation