Skip to main content
Log in

Alkaline Electrodeposition of Ni–ZnO Nanocomposite Coatings: Effects of Pulse Electroplating Parameters

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effects of applied current density (1–10 A/dm2), pulse frequency (1–100 Hz) and duty cycle (10–75 %) on the morphology and microhardness of Ni and Ni–ZnO coatings, incorporation rate of ZnO nanoparticles, current efficiency and deposition rate were investigated. Ni–ZnO composites exhibited a nodular morphology. At low current densities, smooth and compact Ni–ZnO coatings were obtained. As the current density increased more gaps and defects appeared on the coatings surface. Maximum incorporation rate of 4.04 vol% was achieved at the current density of 10 A/dm2. Presence of ZnO nanoparticles in the electrolyte improved the current efficiency of the process and deposition rate of the matrix. The microhardness values of the composites were considerably higher than those of the nickel coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Omidvar H, Sajjadnejad M, Stremsdoerfer G, Meas Y, and Mozafari A, Mater Manuf Process 31 (2015) 31.

    Article  Google Scholar 

  2. Omidvar H, Sajjadnejad M, Stremsdoerfer G, Meas Y, and Mozafari A, Mater Manuf Process 31 (2015) 24.

    Article  Google Scholar 

  3. Chawla K K, Metal Matrix Composites, Wiley Online Library, London (2006).

    Book  Google Scholar 

  4. Sajjadnejad M, Mozafari A, Omidvar H, and Javanbakht M, Appl Surf Sci 300 (2014) 1.

    Article  Google Scholar 

  5. Ahmad Y H and Mohamed A M, Int J Electrochem Sci 9 (2014) 1942.

    Google Scholar 

  6. Sajjadnejad M, Omidvar H, Javanbakht M, Pooladi R, and Mozafari A, Trans Inst Met Finish, 92 (2014) 227.

    Article  Google Scholar 

  7. Frade T, Bouzon V, Gomes A, and da Silva Pereira M, Surf Coat Technol 204 (2010) 3592.

    Article  Google Scholar 

  8. Chandrasekar M and Pushpavanam M, Electrochim Acta 53 (2008) 3313.

    Article  Google Scholar 

  9. Jung S W, Park W I, Yi G C, and Kim M, Adv Mater 15 (2003) 1358.

    Article  Google Scholar 

  10. Liu X, Lin F, Sun L, Cheng W, Ma X, and Shi W, Appl Phys Lett 88 (2006) 2508.

    Google Scholar 

  11. Fayomi O, J Mater Environ Sci 6 (2015) 963.

    Google Scholar 

  12. Zhang X G, Electrochemistry of Zinc Oxide, Corrosion and Electrochemistry of Zinc, Springer, Berlin (1996) 93.

    Book  Google Scholar 

  13. Chassaing E, Portail N, Levy A-F, and Wang G, J Appl Electrochem 34 (2004) 1085.

    Article  Google Scholar 

  14. Baghal S L, Amadeh A, Sohi M H, and Hadavi S, Mater Sci Eng A 559 (2013) 583.

    Article  Google Scholar 

  15. Sajjadnejad M, Ghorbani M, and Afshar A, Ceram Int 41 (2015) 217.

    Article  Google Scholar 

  16. Schlesinger M and Paunovic M, Modern Electroplating, Wiley, London 55 (2011).

    Google Scholar 

  17. Pathak S, Guinard M, Vernooij M G, Cousin B, Wang Z, Michler J, and Philippe L, Surf Coat Technol 205 (2011) 3651.

    Article  Google Scholar 

  18. Halim J, Abdel-Karim R, El-Raghy S, Nabil M, and Waheed A, J Nanomater 2012 (2012) 18.

    Article  Google Scholar 

  19. Yang Y and Cheng Y, Surf Coat Technol 216 (2013) 282.

    Article  Google Scholar 

  20. Xia F, Xu H, Liu C, Wang J, Ding J, and Ma C, Appl Surf Sci 271 (2013) 7.

    Article  Google Scholar 

  21. Vazquez-Arenas J, Cruz R, and Mendoza-Huizar L H, Electrochim Acta 52 (2006) 892.

    Article  Google Scholar 

  22. Kariapper A and Foster J, Trans Inst Met Finish 52 (1974) 87.

    Article  Google Scholar 

  23. Guglielmi N, J Electrochem Soc 119 (1972) 1009.

    Article  Google Scholar 

  24. Shi L, Sun C, Gao P, Zhou F, and Liu W, Appl Surf Sci 252 (2006) 3591.

    Article  Google Scholar 

  25. Bahrololoom M and Sani R, Surf Coat Technol 192 (2005) 154.

    Article  Google Scholar 

  26. Chen L, Wang L, Zeng Z, and Xu T, Surf Coat Technol 201 (2006) 599.

    Article  Google Scholar 

  27. Celis J P, Roos J, and Buelens C, J Electrochem Soc 134 (1987) 1402.

    Article  Google Scholar 

  28. Foster J and Kariapper A, Trans Inst Met Finish, 51 (1973) 27.

    Article  Google Scholar 

  29. Popov K, Vojnović M, Vračar L, and Lazarević B, J Appl Electrochem 4 (1974) 267.

    Article  Google Scholar 

  30. Salehi Doolabi M, Sadrnezhaad S, Salehi Doolabi D, and Asadirad M, Int Heat Treat Surf Eng 6 (2012) 178.

    Article  Google Scholar 

  31. Pollet B, Lorimer J, Phull S, Mason T, Walton D, Hihn J, Ligier V, and Wéry M, J Appl Electrochem 29 (1999) 1359.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Iran National Science Foundation, INSF, (Grant No. 92004488). The authors would like to thank gratefully Iran National Science Foundation, INSF, for financial support of the research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sajjadnejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajjadnejad, M., Setoudeh, N., Mozafari, A. et al. Alkaline Electrodeposition of Ni–ZnO Nanocomposite Coatings: Effects of Pulse Electroplating Parameters. Trans Indian Inst Met 70, 1533–1541 (2017). https://doi.org/10.1007/s12666-016-0950-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0950-4

Keywords

Navigation