Skip to main content
Log in

Capacitance Behavior of Alkanethiol Self-Assembled Monolayer Studied by Scanning Tunneling Microscope Light Emission Spectroscopy

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

We have studied the capacitance behavior of alkanethiol self-assembled monolayer (SAM)-covered Au film by scanning tunneling microscope light emission (STM-LE) spectroscopy in the Kretschmann geometry. Although, the STM-LE from tip-sample gap into the vacuum (tip-side emission) is fundamentally weak and very difficult to detect, we have succeeded in detecting the STM-LE radiated into the prism (prism-side emission) by virtue of the enhancement of prism-coupled geometry. Our experimental results shows that the cutoff energy of STM-LE spectra have been redshifted with increase in thickness (chain length) of the SAM film. In order to explain the cutoff energy shift, we have designed a two-layer tunnel junction model by considering the capacitance response of the SAM film depending on the molecular chain length. It has been found from the model analysis, that the capacitance of the SAM changes with changing of the molecular thickness. Hence, it is concluded that the shift of the cutoff energy has originated from the change of the capacitance of the SAM film depending on the molecular chain length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fan F F, Yang J, Cai L, Price D W, Dirk S M, Kosynkin D V, Yao Y, Rawlett A M, Tour J M, and Bard A J, J Am Chem Soc 124 (2002) 5550.

    Article  Google Scholar 

  2. Dubois L H, and Nuzzo R G, Annu Rev Phys Chem 43 (1992) 437.

    Article  Google Scholar 

  3. Zharnikov M, and Grunze M, J Phys Condens Matter 13 (2001) 11333.

    Article  Google Scholar 

  4. Willey T M, Vance A L, Buuren T van, Bostedt C, Nelson A J, Terminello L J, and Fadley C S, Langmuir 20 (2004) 2746.

    Article  Google Scholar 

  5. Reed M A, and Lee T (Eds.), Molecular Nanoelectronics, American Scientific Publishers, Stevenson Ranch, CA (2003), p 145.

    Google Scholar 

  6. Nitzan A, and Ratner M A, Science 300 (2003) 1384.

    Article  Google Scholar 

  7. Akkerman H B, Blom P W M, Leeuw D M de, and Boer B de, Nature 441 (2006) 69.

    Article  Google Scholar 

  8. Beebe J M, Kim B, Gadzuk J W, Frisbie C D, and Kushmerick J G, Phys Rev Lett 97 (2006) 026801.

    Article  Google Scholar 

  9. Yan H, Bergren A J, McCreery R, Rocca M L D, Martin P, Lafarge P, and Lacroix J C, PNAS 110 (2013) 5326.

    Article  Google Scholar 

  10. Jiang J, Lu W, and Luo Y, Chem Phys Lett 400 (2004) 336.

    Article  Google Scholar 

  11. Love J C, Estroff L A, Kriebel J K, Nuzzo R G, and Whitesides G M, Chem Rev 105 (2005) 1103.

    Article  Google Scholar 

  12. Pensa E, Vericat C, Grumelli D, Salvarezza R C, Park S H, Longo G S, Szleifer I, and Leo L P M D, Phys Chem Chem Phys 14 (2012) 12355.

    Article  Google Scholar 

  13. Guo, and Li F, Phys Chem Chem Phys 16 (2014) 19074.

  14. Romaner L, Heimel G, Ambrosch-Draxl C, Zojer E, Adv Funct Mater 18 (2008) 3999.

    Article  Google Scholar 

  15. Tomfohr J K, and Sankey O F, Phys Rev B 65 (2002) 245105.

    Article  Google Scholar 

  16. Boubour E, Lennox R B, Langmuir 16 (2000) 4222.

    Article  Google Scholar 

  17. Porter M D, Bright T B, Allara D L, Chidsey C E D, J Am Chem Soc 109 (1987) 3559.

    Article  Google Scholar 

  18. Berggren C, Bjarnason B, and Johansson G, Electroanalysis 13 (2001) 173.

    Article  Google Scholar 

  19. Maisch S, Buckel F, and Effenberger F, J Am Chem Soc 127 (2005) 17315.

    Article  Google Scholar 

  20. Coombs J H, Gimzewski J K, Reihl B, Sass J K, and Schlittler R R, J Microsc 152 (1988) 325.

    Article  Google Scholar 

  21. Uehara Y, Ito K, and Ushioda S, Appl Surf Sci 107 (1996) 247.

    Article  Google Scholar 

  22. Kretschmann E, Z Physik 241 (1971) 313 [in German].

    Article  Google Scholar 

  23. Ahamed J U, Sanbongi T, Katano S, and Uehara Y, Jpn J Appl Phys 49 (2010) 08LB09.

  24. Uehara Y, Watanabe J, Fujikawa S, and Ushioda S, Phys Rev B 51 (1995) 2229.

    Article  Google Scholar 

  25. Ahamed J U, Katano S, and Uehara Y, Bull Mater Sci 38 (2015) 1271.

    Article  Google Scholar 

  26. Takeuchi K, Uehara Y, Ushioda S, and Morita S, J Vac Sci Technol B 9 (1991) 557.

    Article  Google Scholar 

  27. Ekvall I, Wahlström E, Claesson D, Olin H, and Olsson E, Meas Sci Technol 10 (1999) 11.

    Article  Google Scholar 

  28. Porath D, Goldstein Y, Grayevsky A, and Millo O, Surf Sci 321 (1994) 81.

    Article  Google Scholar 

  29. Allen F H, Kennard O, Watson D G, Brammer L, Orpen A G, and Taylor R, J Chem Soc, Perkin Trans 2 (1987) S1.

    Article  Google Scholar 

  30. Burkert U, and Allinger N L, Molecular Mechanics, ACS Monograph, American Chemical Society, Washington, DC (1982), p 177.

    Google Scholar 

  31. Johnson P B, and Christy R W, Phys Rev B 6 (1972) 4370.

    Article  Google Scholar 

  32. Lynch D W, and Hunter W R, Handbook of Optical Constants of Solids, ed Palik E D, Academic Press, New York (1985), p 357.

  33. Akkerman H B, Naber R C G, Jongbloed B, Hal P A van, Blom P W M, Leeuw D M de, and Boer B de, Proc Natl Acad Sci USA 104 (2007) 11161.

    Article  Google Scholar 

  34. Slowinski K, Chamberlain R V, Miller C J, and Majda M, J Am Chem Soc 119 (1997) 11910.

    Article  Google Scholar 

  35. Becker R S, Golovchenko J A, and Swartzentruber B S, Phys Rev Lett 55 (1985) 987.

    Article  Google Scholar 

  36. Lutwyche M I, and Wada Y, J Vac Sci Technol B 13 (1995) 2819.

    Article  Google Scholar 

  37. Hicks J F, Templeton A C, Chen S W, Sheran K M, Jasti R, Murray R W, Debord J, Scaaf T G, and Whetten R L, Anal Chem 71 (1999) 3703.

    Article  Google Scholar 

  38. Sahalov H, O’Brien B, Stebe K J, Hristova K, and Searson P C, Langmuir 23 (2007) 9681.

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work was carried out in the Nano-Photoelectronics Laboratory, Tohoku University, Japan and was supported in part by the Tohoku University Electro-Related Departments Global COE Program. The Authors would like to thank Mr. Tomonori Sanbongi and Wataru Iida for their cooperation and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Uddin Ahamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahamed, J.U., Katano, S. & Uehara, Y. Capacitance Behavior of Alkanethiol Self-Assembled Monolayer Studied by Scanning Tunneling Microscope Light Emission Spectroscopy. Trans Indian Inst Met 69, 1579–1585 (2016). https://doi.org/10.1007/s12666-015-0733-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0733-3

Keywords

Navigation