Skip to main content
Log in

Nanoeutectic Composites: Processing, Microstructure and Properties

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Nanostructured alloys exhibit high strength and large elastic strain limit. Unfortunately, the plasticity of these alloys is disappointingly low at room temperature than that of the coarse grain counterparts. In this work, a series of nanoeutectic composites have been developed in Ti–Fe and Ni–Zr based alloys, which exhibit very high strength, like bulk metallic glasses and large plasticity at room temperature. Systematic investigations have been performed to reveal the effect of alloy addition on the alteration of the microstructure and the properties of nano-lamellar phases. Even though, in some cases, alloy addition stabilizes micrometer-sized proeutectic bcc/fcc solid solution phase(s) with dendritic morphology, but the residual melt solidifies into a binary nanoeutectic comprised of alternating soft bcc/fcc phase together with hard intermetallic phase. Furthermore, electron microscopic studies of differently deformed specimens and strain rate jump test have been performed to reveal the role of eutectic lamellae on the strain rate sensitivity and to explore the origin of plasticity in nanoeutectic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Woodcock T G, Kushy M, Mato S, Alcala G, Thomas J, Loser W, Gebert A, Eckert J, and Schultz L, Acta Mater 53 (2005) 5141.

    Article  Google Scholar 

  2. Sun B B, Sui M L, Wang Y M, Li Y, He G, Eckert J, and Ma E, Acta Mater 54 (2006) 1349.

    Article  Google Scholar 

  3. Barbier D, Huang M X, and Bouaziz O, Intermetallics 35 (2013) 41.

    Article  Google Scholar 

  4. Das J, Kim K B, Baier F, Löser W, and Eckert J, Appl Phys Lett 87 (2005) 161907.

    Article  Google Scholar 

  5. Park J M, Sohn S W, Kim T E, Kim D H, Kim K B, and Kim W T, Scr Mater 57 (2007) 1153.

    Article  Google Scholar 

  6. Das J, Theissmann R, Löser W, and Eckert J, J Mater Res 25 (2010) 943.

    Article  Google Scholar 

  7. Kim J Y, Lee B W, Read D T, and Kwon D, Scr Mater 52 (2005) 353.

    Article  Google Scholar 

  8. Zhang L C, Lu H B, Mickel C, and Eckert J, Appl Phys Lett 91 (2007) 051906.

    Article  Google Scholar 

  9. Park J M, Kim T E, Sohn S W, Kim D H, Kim K B, Kim WT, and Eckert J, Appl Phys Lett 93 (2008) 031913.

    Article  Google Scholar 

  10. Maity T, and Das J, AIP Adv 2 (2012) 032175.

    Article  Google Scholar 

  11. Maity T, and Das J, Intermetallics 63 (2015) 51.

    Article  Google Scholar 

  12. Standard ASTM G129-00, Standard practice for slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking, ASTM International, Conshohocken (2013).

    Google Scholar 

  13. Wei Q, Cheng S, Ramesh K T, and Ma E, Mater Sci Eng A 381 (2004) 71.

    Article  Google Scholar 

  14. Young R A, Introduction to Rietveld Method, Oxford University Press, Oxford, UK (1993).

    Google Scholar 

  15. Maity T, and Das J, J Alloys Compd 585 (2014) 54.

    Article  Google Scholar 

  16. Taylor G, Prog Mater Sci 36 (1992) 29.

    Article  Google Scholar 

  17. Elmustafa A A, and Stone D S, J Mech Phys Solids 51 (2003) 357.

    Article  Google Scholar 

  18. Maity T, Roy B, and Das J, Acta Mater 97 (2015) 170.

    Article  Google Scholar 

  19. Juhasz A, Tasnadi P, Szaszvari P, and Kovacs I, J Mater Sci 21 (1986) 3287.

    Article  Google Scholar 

  20. Stroh A N, Adv Phys 6 (1957) 418.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank P. Das, R. Kundu, S. Maity, and K. Sahoo for technical assistance. Financial support provided by SRIC, IIT Kharagpur (SGIRG Grant), and Naval Research Board, Govt. of India (Grant No. NRB/4003/PG/357), are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, J., Maity, T. & Singh, A. Nanoeutectic Composites: Processing, Microstructure and Properties. Trans Indian Inst Met 68, 1199–1205 (2015). https://doi.org/10.1007/s12666-015-0704-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0704-8

Keywords

Navigation