Skip to main content
Log in

Texture in the Design of Advanced Steels

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This paper deals with the importance of crystallographic texture as one of the design criteria for the development of advanced steels. The importance of texture has been highlighted by considering the cases of three important grades of steel, such as the electrical-, the deep-drawing quality- and the linepipe steels. In each case the evolution of texture as a function of the compositional and processing variables has been evaluated. This has clearly shown that texture is as fundamental as the microstructure in deciding the properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Shimanaka H, Ito Y, Matsumura K, and Fukuda B, J Magn Magn Mater 26 (1982) 57.

    Article  CAS  Google Scholar 

  2. Matsumura K, and Fukuda B, IEEE Trans Magn MAG-20 (1984) 1533.

  3. Frommert M, Zobrist C, Lahn L, Böttcher A, Raabe D, and Zaefferer S, J Magn Magn Mater 320 (2008) 657.

    Article  Google Scholar 

  4. Honda K, Masumoto H, and Kaya S, Sci Rep Tohoku Imp Univ 17 (1928) 111.

    CAS  Google Scholar 

  5. Matsuo M, ISIJ Int 29 (1989) 809.

    Article  CAS  Google Scholar 

  6. Goss N P, US Patent 1965559 (1934).

  7. Bozorth R M, Trans Am Soc Met 23 (1935) 1102.

    Google Scholar 

  8. Dunn C G, Cold Working of Metals, ASM, Cleveland (1949), p 113.

    Google Scholar 

  9. Beck P A, Adv Phys 3 (1954) 245.

    Article  Google Scholar 

  10. Fiedler H C, J Appl Phys 29 (1958) 361.

    Article  Google Scholar 

  11. May J E, and Turnbull D, Trans Am Inst Min Metall Eng 212 (1958) 769.

    CAS  Google Scholar 

  12. Xia Z, Kang Y, and Wang Q, J Magn Magn Mater 320 (2008) 3229.

    Article  CAS  Google Scholar 

  13. Taguchi S, and Sakakura A, US Patent 3159511, 1 December 1964.

  14. Böttcher A, and Lűcke K, Acta Metall Mater 41 (1993) 2503.

    Article  Google Scholar 

  15. Matsuo M, Sakai T, and Yozo S, Metall Trans 17A (1986) 1313.

    CAS  Google Scholar 

  16. Mishra S, Därmann C, and Lűcke K, Metall Trans 17A (1986) 1301.

    CAS  Google Scholar 

  17. Shimizu Y, Ito Y, and Iida Y, Metall Trans 17A (1986) 1323.

    CAS  Google Scholar 

  18. Dorner D, Zaefferer S, Lahn L, and Raabe D, J Magn Magn Mater 304 (2006) 183.

    Article  CAS  Google Scholar 

  19. Dunn C G, Acta Metall I (1954) 163.

    Google Scholar 

  20. Dunn C G, Acta Metall 2 (1954) 173.

    Article  CAS  Google Scholar 

  21. Dunn C G, and Koh P K, Trans Am Inst Min Metall Eng 206 (1956) 1017.

    Google Scholar 

  22. Walter J L, and Hibbard W R, Trans Am Inst Min Metall Eng 212 (1958) 731.

    CAS  Google Scholar 

  23. Hu H, Acta Metall 8 (1960) 124.

    Article  Google Scholar 

  24. Walter J L, Hibbard W R, and Dunn C G, Acta Metall 8 (1960) 126.

    Article  Google Scholar 

  25. Hu H, Trans Met Soc AIME 221 (1961) 130.

    CAS  Google Scholar 

  26. Hibbard W R, and Tully W R, Trans Met Soc AIME 221 (1961) 336.

    CAS  Google Scholar 

  27. Taoka T, Furubayashi E, and Takeuchi S, Trans Iron Steel Inst Jpn 6 (1966) 290.

    Google Scholar 

  28. Ll’aoka T, Furubayashi E, and Takeuchi S, Trans Iron Steel Inst Jpn 7 (1967) 95.

    Google Scholar 

  29. Gokyuand M, and Matsuo M, J Jpn Inst Met 31 (1967) 374.

    Google Scholar 

  30. Matsuo M, Hayamiand S, and Nagashima S, Advances in X-Ray Analysis, vol. 14, Plenum Press, New York (1970), p 214.

    Google Scholar 

  31. Matsuo M, Hayami S, and Nagashima S, Suppl Trans Iron Steel Inst Jpn 11 (1971) 871.

    Google Scholar 

  32. Philip T V, and Lenhart R E, Trans Met Soc AIME 221 (1961) 439.

    Google Scholar 

  33. Nakae H, and Tagashira K, Trans Jpn Inst Met 14 (1973) 15.

    Google Scholar 

  34. Pease N C, Jones D W, Wise M H L, and Hutchinson W B, Met Sci 15 (1982) 203.

    Google Scholar 

  35. Sakai T, Matsuo M, Tanino M, Shindo T, and Shiozaki M, in Proc 6th International Conference on Texture of Materials, ISIJ, Tokyo (1981), p 938.

  36. Inokuti Y, Shimizu Y, Maeda C, and Shimanaka H, in Proc Ist RISC Int Symp Recrystallization and Grain Growth of Multi-phase and Particle Containing Materials, (eds) Hansen N, Jones A R, and Leffers T, RISC National Laboratory, Rosklide (1980), p 71.

  37. Inokuti Y, Maeda C, Ito Y, and Shimanaka H, in Proc 6th Int Conf Texture of Materials, ISIJ, Tokyo (1981), p 948.

  38. Inokuti Y, and Maeda C, Trans Iron Steel Inst Jpn 24 (1984) 657.

    Article  Google Scholar 

  39. Nielsen J P, Trans Am Inst Min Met Eng 200 (1954) 1034.

    Google Scholar 

  40. Matsuo M, Sakai T, and Suga Y, Metall Trans A 17A (1986) 1313.

    CAS  Google Scholar 

  41. Rickett R L, and Fick N C, Trans. Am Inst Min Met Eng 167 (1946) 346.

    Google Scholar 

  42. Ushigami Y, Kubota T, and Takahashi N, ISIJ Int 38 (1998) 553.

    Article  CAS  Google Scholar 

  43. Dzubinsky M, and Kovac F, J Magn Magn Mater 254–255 (2003) 388.

    Article  Google Scholar 

  44. Kestens L, and Jacobs S, Texture, Stress, and Microstructure, vol. 2008, Article ID 173083, Hindawi Publishing Corporation. doi:10.1155/2008/173083.

  45. Kestens L, and Jonas J J, in Metalworking: Bulk Forming, (ed) Semiatin S L, vol. 14A of ASM Handbook, ASM International, Materials Park (2005), p 685.

  46. Yoshinaga N, Kestens L, and De Cooman B C, Mater Sci Forum 495–497 (2005) 1267.

    Article  Google Scholar 

  47. Tomida T, J Mater Eng Perform 5 (1996) 316.

    Article  CAS  Google Scholar 

  48. Lankford W J, Snyder S C, and Bauscher J A, Trans Am Soc Met 42 (1950) 1197.

    Google Scholar 

  49. Ray R K, Ghosh P, and Bhattacharjee D, Mater Sci Technol 25 (2009) 1154.

    Article  CAS  Google Scholar 

  50. Huchinson W B, Nilson K-I, and Hirsch J, Metallurgy of Vacuum Degassed Steel Products, TMS, Warrendale (1990), p 109.

    Google Scholar 

  51. Held F J, in Mechanical Working and Steel Processing Conference ISS (1965), p 3.

  52. Meyer L, Bleck W, and Mueschenborn W, International Forum for Physical Metallurgy of IF Steels, ISIJ, Tokyo (1994), p 203.

    Google Scholar 

  53. Huchinson B, Mater Sci Forum 157–162 (1994) 1917.

    Article  Google Scholar 

  54. Holie S, Mater Sci Technol 16 (2000) 1079.

    Google Scholar 

  55. Krauss G, Wilshynsky D O, and Matlock D K, in Interstitial Free Steel Sheets: Processing, Fabrication and Properties, (eds) Collins L E, and Baragar D L, CIM/ICM, Ottawa (1991), p 1.

  56. De Cooman B C, and De Vyt A, International Forum for the Properties and Application of IF Steels, IF Steels, The Iron and Steel Institute of Japan (2003), p 249.

  57. Ruiz-Aparicio L J, Garcia C I, and DeArdo A J, Metall Mater Trans A 32 (2001) 2325.

    Article  Google Scholar 

  58. Ruiz-Aparicio L J, Garcia C I, and DeArdo A J, in Proc IF Steels 2000, ISS, Warrendale (2000), p 85.

  59. Mizui N, in Proc Int Symp Modern LC and ULC Sheet Steels for Cold Forming: Processing and Properties, (ed) Bleck W, Aachen, Germany (1998), p 169.

  60. Hosoya Y, Hashimoto T, and Nishimoto A, Physical Metallurgy of IF Steels, ISIJ, Tokyo (1993), p 179.

    Google Scholar 

  61. Hudd R C, Met Mater February 1997, 71.

  62. Verdeja L F, Sancho J P, and Verdeja J I, Rev Minas 19 (2000) 33.

    Google Scholar 

  63. Kino N, Matsumura Y, Tsuchiya H, Furukawa Y, Akagi H, and Sanagi S, CAMP-ISIJ 3 (1990) 785.

    Google Scholar 

  64. Satoh S, Obara T, Takasaki J, Yasunda A, and Mishida M, Kawasaki Steel Tech Rep 12 (1985), p 36.

    Google Scholar 

  65. Sanagi S, CAMP-ISIJ 3 (1990) 1768.

    Google Scholar 

  66. Kwon O, and Min K Z, International Forum for Physical Metallurgy of IF Steels, ISIJ, Tokyo (1994), p 9.

  67. Gupta I, Parayil T, and Shiang L T, in Proc Symp Hot and Cold Rolled Sheet Steels, (eds) Pradhan R, and Ludkovsky G, TMS-AIME, Warrendale (1988), p 139.

  68. Matsumoto T, Tanaka Y, and Kawase Y, Tetsu-to-Hagane 73 (1987) S637.

    Google Scholar 

  69. Chang S K, and Kang H J, Steel Res 66 (1995) 463.

    CAS  Google Scholar 

  70. Yoda R, Tsukatani I, Inoue I, and Takehara K, CAMP-ISIJ 6 (1993) 747.

  71. Satoh S, Obara T, Takasuki J, Yasunda A, and Mishida M, Kawasaki Steel Tech Rep 16 (1984) 273.

    CAS  Google Scholar 

  72. Furono Y, Kawano A, Sayanagi S, Matsuda M, Hayakawa H, and Shibata M, Tetsu-to-Hagane 72 (1987) S637.

  73. Kwon O, Kim G, and Chang R W, in Metallurgy of Vacuum Degassed Steel Products, (ed) Pradhan R, TMS-AIME, Warrendale (1990), p 215.

  74. Hashimoto O, in Proc Int Conf Advances in Physical Metallurgy and Applications of Steel, The Metals Society of Great Britain, Book 284, London (1982), p 95.

  75. Tokunaga Y, and Tamada M, US Patent 4504326.

  76. Ray R K, Jonas J J, and Hook R E, Int Mater Rev 39 (1994) 129.

    Article  CAS  Google Scholar 

  77. Gupta I, and Bhattacharya D, in Metallurgy of Vacuum Degassed Steel Products, (ed) Pradhan R, TMS, The Minerals, Metals and Materials Society, Rosklide (1990), p 43.

  78. Ghosh P, Ray R K, Bhattacharya B, and Bhargava S, Scr Mater 55 (2006) 271.

    Article  CAS  Google Scholar 

  79. Ghosh P, Bhattacharya B, and Ray R K, Scr Mater 56 (2007) 657.

    Article  CAS  Google Scholar 

  80. Akbarzadeh A, Collins L E, Kostic M, and Jonas J J, in 36th MWSP Conference Proceedings, ISS-AIME, vol. XXXII, 1995, p 337.

  81. Lotter U, and Meyer L, Met Technol 1 (1977) 27.

    Article  Google Scholar 

  82. Inagaki H, Trans ISIJ 17 (1977) 166.

    CAS  Google Scholar 

  83. Inagaki H, Trans ISIJ 17 (1977) 75.

    Google Scholar 

  84. Darmann-Nowak C, and Engl B, Steel Res 62 (1991) 576.

    Google Scholar 

  85. Yutori T, and Ogawa R, in Proc 6th Int Conf Textures of Materials, vol. 1, The Iron and Steel Institute of Japan, Tokyo (1981), p 669.

  86. Tanaka T, Int Met Rev 26 (1981) 185.

    Article  CAS  Google Scholar 

  87. Vlad C M, and Bunge H J, in Proc 6th Int Conf Textures of Materials, vol. 1, The Iron and Steel Institute of Japan, Tokyo (1981), p 649.

  88. Bramfitt B L, and Marder A R, in Proc Processing and Properties of Low Carbon Steel, AIME, Cleveland (1972), p 191.

  89. Inagaki H, Z Metallkd 74 (1983) 716.

    CAS  Google Scholar 

  90. Inagaki H, and Kodama M, Tetsu-to-Hagane 67 (1981) 640.

    Google Scholar 

  91. Inagaki H, in Proc 5th Int Conf Textures of Materials, vol. 2, Berlin (1978), p 157.

  92. Inagaki H, in Proc 6th Int Conf Textures of Materials, vol. 1, The Iron and Steel Institute of Japan, Tokyo (1981), p 149.

  93. Ray R K, and Jonas J J, Int Mater Rev 35 (1990) 1.

    Article  Google Scholar 

  94. Patel J R, and Cohen M, Acta Metall 1 (1953) 531.

    Article  CAS  Google Scholar 

  95. Hu H, and Kallend J S, in Proc 6th Int Conf Textures of Materials, vol. 1, The Iron and Steel Institute of Japan, Tokyo (1981), p 164.

  96. Ruddle G E, Voyzelle B, Bowker J T, and Collins L E, in 34th MWSP Conference Proceedings, vol. XXX, ISS-AIME (1993), p 19.

  97. Akbarzadeh A, Ruddle G E, Kostic M, and Jonas J J, in 37th MWSP Conference Proceedings, vol. XXXIII, ISS-AIME (1996), p 499.

  98. Akbarzadeh A, and Jonas J J, in ICOTOM 11, China, September 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, R.K., Ghosh, P. Texture in the Design of Advanced Steels. Trans Indian Inst Met 66, 641–653 (2013). https://doi.org/10.1007/s12666-013-0299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-013-0299-x

Keywords

Navigation