Skip to main content
Log in

Mechanical Properties of Friction Stir Welded Cast Al–Mg–Sc Alloys

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Friction Stir (FS) welding promises joints with low porosity, fine microstructures, and low vaporization of volatile elements compared with conventional welding techniques. FS weld was carried out on Vacuum Induction Melted 5 mm thick cast Aluminum–Magnesium–Scandium (Al–Mg–Sc) alloy plates. Microstructural evaluation revealed that due to FS welding, fine and fragmented dynamically recrystallized grains have been formed in the weld nugget. Tensile fracture occurred out side the weld zone. The tensile strength of the welded joint is more than the cast base metal. The hardness of the FS welded joint is less than the hardness of the cast base metal. The minimum hardness was located on the retreating side of the weld. These results clearly show that FSW process is amenable to join cast Al–Mg–Sc alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Willey L A, United States Patent 3619181, (1971).

  2. Filatov Yu A, Welding in the world (1994), p 428.

  3. Roder O, Schauerte O, Lutjering G, Gysler A, Mater Sci Forum 217222 (1996) 1835.

    Article  Google Scholar 

  4. Aiura T, Sugawara N, and Miura Y, Mater Sci Eng A A280 (2000) 139.

    CAS  Google Scholar 

  5. Lathabai S, and Lloyd P G, Acta Mater 50 (2002) 4275.

    Article  CAS  Google Scholar 

  6. Huang C, and Kou S, Weld J 79 (2000) 113s.

    Google Scholar 

  7. Zhao H, White D R, and Debroy T, Int Mater Rev 44 (1999) 238.

    Article  Google Scholar 

  8. Sutton M A, Reynolds A P, Wang D Q, Hubbard C R, J Eng Mater Technol 124 (2002) 215.

    Article  Google Scholar 

  9. Thomas W M, Nicholas E D, Needam J C, Murch M G, Templesmith P, and Dawes C J, GB Patent application No. 9125978.8 (1991).

  10. Hirata T, Oguri T, Hagino H, Tanaka T, Chung S W, Takigawa Y, Higashi K, Mater Sci Eng A 456 (2007) 344.

    Article  Google Scholar 

  11. Fujii H, Cui L, Maeda M, and Nogi K, Mater Sci Eng A 419 (2006) 25.

    Article  Google Scholar 

  12. Watanabe T, Takayama H, and Yanagisawa A, J Mater Process Technol 178 (2006) 342.

    Article  CAS  Google Scholar 

  13. Sato Y S, Hwan S, Park C, and Kokawa H, Metall Mater Trans A 32 (2001) 3033.

    Article  Google Scholar 

  14. Shigematsu I, Kwon Y-J, Suzuki K, Imai T, and Saito N, J Mater Sci Lett 22 (2003) 353.

    Article  CAS  Google Scholar 

  15. Svensson L-E, Karlsson L, Larsson H, Karlsson B, Fazzini M, and Karlsson J, Sci Technol Weld Join 5 (2000) 285.

    Article  CAS  Google Scholar 

  16. Lombard H, Hattingh D G, Steuwar A, and James M N, Eng Fract Mech 75 (2008) 341.

    Article  Google Scholar 

  17. Peel M, Steuwer A, Preuss M, and Withers P J, Acta Mater 51 (2003) 4791.

    Article  CAS  Google Scholar 

  18. Mishra R S, and Ma Z Y, Mater Sci Eng R 50 (2005) 1.

    Article  Google Scholar 

  19. Liu H J, Fujii H, and Nogi K, Mater Sci Technol 20 (2004) 399.

    Article  Google Scholar 

  20. Genevois C, Deschamps A, and Vacher P, Mater Sci Eng A 415 (2006) 162.

    Article  Google Scholar 

  21. Kwon Y J, Shigematsu I, and Saito N, Scripta Mater 49 (2003) 785.

    Article  CAS  Google Scholar 

  22. Salem H G, Scripta Mater 49 (2003) 1103.

    Article  CAS  Google Scholar 

  23. Attallah M M, Davis C L, and Strangwood M, Sci Technol Weld Join 12 (2007) 361.

    Article  CAS  Google Scholar 

  24. Lenczowski B, Hack T, Wieser D, Tempus G, Fischer G, Becker J, Folkers K, Braun R, and Lutjering G, Mater Sci Forum 331337 (2000) 957.

    Article  CAS  Google Scholar 

  25. Cabello Munoz A, Ruckert G, Huneau B, Sauvage X, Marya S, J Mater Pro Technol 197 (2008) 337.

    Article  Google Scholar 

  26. Zhao J, Jiang F, Jian H, Wen K, Jiang L, Chen X, Mater Des 31 (2010) 306.

    Article  Google Scholar 

  27. Karthikeyan L, Senthilkumar V S, Balasubramanian V, and Natarajan S, Mater Des 30 (2009) 2237.

    Article  CAS  Google Scholar 

  28. Marzoli L M, Strombeck A V, Dos Santos J F, Gambaro C, and Volpone L M, Composites Sci Technol 66 (2006) 363.

    Article  CAS  Google Scholar 

  29. Santella M L, Engstorm T, Storjohann D, and Pan T Y, Scripta Mater 53 (2005) 201.

    Article  CAS  Google Scholar 

  30. Ma Z Y, Mishra R S, and Mahoney M W, Scripta Mater 50 (2004) 931.

    Article  CAS  Google Scholar 

  31. Ma Z Y, Sharma S R, and Mishra R S, Mater Sci Eng A 433 (2006) 272.

    Google Scholar 

  32. Nakata K, Kim Y G, Fujii H, Tsumura T, and Komzaki T, Mater Sci Eng A 437 (2006) 274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Subbaiah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subbaiah, K., Geetha, M., Govindaraju, M. et al. Mechanical Properties of Friction Stir Welded Cast Al–Mg–Sc Alloys. Trans Indian Inst Met 65, 155–158 (2012). https://doi.org/10.1007/s12666-011-0117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-011-0117-2

Keywords

Navigation