Skip to main content
Log in

Simulation of microstructure formation in technical aluminum alloys using the multiphase-field method

  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Simulation results of microstructure evolution in technical aluminum alloys are presented. The examples comprise solidification and further heat treatment of three different alloy classes, namely for the hypoeutectic alloy AA6061, the near eutectic alloy A356 and the highly alloyed, hypereutectic commercial alloy KS1295 being used in automotive applications. After a short introduction to the simulation models being applied — especially to the multiphase-field approach coupled to thermodynamic databases — the evolving microstructures are discussed in the context of the interplay between thermodynamics, kinetics, interfacial properties and nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.calphad.org

  2. Saunders N and Miodownik A, CALPHAD calculation of phase diagrams: a comprehensive guide. Elsevier; 1998.

  3. Thermo-Calc Software: http://www.thermocalc.com

  4. ThermoTech: http://www.sentesoftware.co.uk

  5. Steinbach I, Pezzolla F, Nestler B, Seeßlberg M, Prieler R, Schmitz G J and Rezende J L L, A phase field concept for multiphase systems. Physica D, 94 (1996) 135.

    Article  MATH  Google Scholar 

  6. Grafe U, Böttger B, Tiaden J and Fries S G, Coupling of Multicomponent Thermodynamic Databases to a Phase Field Model: Application to Solidification and Solid State Transformations of Superalloys, Scripta Materialia, 42(12) (2000) 1179.

    Article  CAS  Google Scholar 

  7. Böttger B, Grafe U, Ma D and Fries S G, Mater. Sci. Technol., 16 (2000) 1425.

    Article  Google Scholar 

  8. Eiken J, Böttger B and Steinbach I, Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application, Phys. Rev. E, 73 (2006) 066122.

    Article  CAS  ADS  Google Scholar 

  9. Böttger B, Apel M, Eiken J, Schaffnit P and Steinbach I, Phasefield simulation of solidification and solid-state transformations in multicomponent steels, Steel Research Int., 79(8) (2008) 608.

    Google Scholar 

  10. Eiken J, Böttger B and Steinbach I, Simulation of Microstructure Evolution during solidification of Magnesium-Based Alloys, Trans. Indian Inst. Met., 60(2–3) (2007) 179.

    CAS  Google Scholar 

  11. Böttger B, Eiken J, Ohno M, Klaus G, Fehlbier M, Schmid-Fetzer R, Steinbach I and Bührig-Polaczek A, Controlling microstructure in magnesium alloys: a combined thermodynamic, experimental and simulation approach. Adv. Eng. Mater., 8 (2006) 241.

    Article  CAS  Google Scholar 

  12. Warnken N, Ma D, Mathes M and Steinbach I, Investigation of eutectic island formation in SX superalloys, Materials Science and Engineering A, 413(12) (2005) 267.

    Article  CAS  Google Scholar 

  13. MICRESS www.micress.de

  14. Steinbach I, Böttger B, Eiken J, Warnken N and Fries S G, CALPHAD and Phase-Field Modeling: A Successful Liaison, Journal of Phase Equilibria and Diffusion, 28(1) (2007) 101

    Article  CAS  Google Scholar 

  15. Kitashima T, Coupling of the phase-field and CALPHAD methods for predicting multicomponent solid-state phase transformations, Phil. Mag.. 88(11) (2008) 1615.

    Article  CAS  ADS  Google Scholar 

  16. Fries S G, Böttger B, Eiken J and Steinbach I, Upgrading CALPHAD to microstructure simulation: the phase-field method, Int. J. Mat. Res., 100 (2009) 2

    Google Scholar 

  17. Qin R S, Wallach E R and Thomson R C, A phase-field model for the solidification of multicomponent and multiphase alloys, J. Cryst. Growth, 279(1–2) (2005) 163

    Article  CAS  ADS  Google Scholar 

  18. Kovacevic I, Simulation of spheroidisation of elongated Si-particle in Al-Si alloys by the phase-field model, Mater. Sci. Eng. A, 496(1–2) (2008) 345

    Google Scholar 

  19. Wang J S and Lee P D, Quantitative Simulation of Fe-rich Intermetallics in Al-Si-Cu-Fe Alloys during Solidification, Proceedings of 138th TMS Annual Meeting and Exhibition, San Francisco Feb 2009, VOL 1: Materials Processing and properties

  20. Böttger B, Eiken J and Steinbach I, Phase field simulation of equiaxed solidification in technical alloys, Acta Mater., 54 (2006) 2697.

    Article  CAS  Google Scholar 

  21. Böttger B, Apel M, Barnes S, Scheppe F and Sagel A, Computer Aided Development of Improved Alloys for Automotive Pistons, presentation at the 11th International Conference on Aluminium Alloys ICAA Neckarsulm (Germany), (2008)

  22. Qin R S, Wallach E R, A phase-field model coupled with a thermodynamic database, Acta Mat. 51(20) (2003) 6199

    Article  CAS  Google Scholar 

  23. COST 507 Thermochemical database for light metal alloys, Vol.2, Eds. I. Ansara, A.T. Dinsdale, M.H. Rand, Publications of the European Communities, Luxembourg, 1998 (ISBN 92-828-3902-8). Database available e.g. from [3]

    Google Scholar 

  24. MOBAL1: Mobility database for Al-alloys, Thermo-Calc Software: www.thermocalc.se

  25. Sha G K A, O’Reilly Q, Cantor B, Worth J and Hamerton R, Growth Related metastable phase selection in A 6XXX series wrought Al alloy, Mat. Sci. Eng. A, 304–306 (2001) 612.

    Article  Google Scholar 

  26. Samaras S N, Modelling of microstructure evolution during precipitation processes: a population balance approach of the KWN model, Modelling and Simulation in Materials Science and Engineering, 14(8) (2006) 1271

    Article  CAS  ADS  Google Scholar 

  27. Tanihata H, Sugawara T, Matsuda K and Ikeno S, Journal of Materials Science, 34 (1999) 2105.

    Article  Google Scholar 

  28. Kurz-Fisher, Fundamentals of Solidification; Trans Tech Publications (1989)ISBN 0-87849-522-3

  29. Carré A, et al., to be published

  30. TTAl5: thermodynamic database for Aluminum alloys developed by [4]

  31. Böttger B, Eiken J and Apel M, Phase-field simulation of microstructure formation in technical castings — A self-consistent homoenthalpic approach to the micro-macro problem, J. Comput. Phys. (2009) 6784

  32. Böttger B, et al., to be published

  33. Apel M, Benke S and Steinbach I, Virtual Dilatometer Curves and effective Young’s modulus of a 3D multiphase structure calculated by the phase-field method, Computational Materials Science, 45 (2009) 589

    Article  CAS  Google Scholar 

  34. G.J. Schmitz and U. Prahl: Toward a Virtual Platform for Materials Processing, JOM, 61(5) (2009)19

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Böttger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttger, B., Carré, A., Eiken, J. et al. Simulation of microstructure formation in technical aluminum alloys using the multiphase-field method. Trans Indian Inst Met 62, 299–304 (2009). https://doi.org/10.1007/s12666-009-0046-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-009-0046-5

Keywords

Navigation