Skip to main content

Advertisement

Log in

Evaluation of groundwater recharge estimation methods in a watershed in the Brazilian Savannah

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Brazilian Savannah Biome is strategic for Brazilian agriculture and for maintaining Brazil's hydrological balance, contributing to river flows from eight of the twelve Brazilian hydrographic regions. In recent years, there has been a continuous growth of irrigated agriculture, the main activity that uses the water resource, and the emergence of conflicts over water use. Thus, to improve water resource management in the Brazilian Savannah, it is important to better understand groundwater recharge rates to determine the magnitude of the sustainable groundwater resource in the region. The study aimed to evaluate groundwater recharge estimation methods in a watershed located in the Brazilian Savannah region. For this, recharge rates were calculated for the period from October 2009 to September 2011 using the methods of baseflow separation, water table fluctuation, and a sequential water balance (BALSEQ). The recharge rates estimated by the baseflow separation, and water table fluctuation methods were, respectively, 23.7% and 26.6% of the total rainfall of 1753.8 mm in the watershed. Using the BALSEQ water balance method, the potential recharge for the period was estimated to be 31.5% of annual average precipitation. The recharge estimates calculated by the methods were consistent with those observed in other agricultural watersheds in the Brazilian Savannah Biome. Also, the evaluated methods can be used as a tool by water resource managers for the rational use of groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albuquerque ACLS, Chaves HML (2011) Estimativa de recarga da Bacia do Rio das Fêmeas através de métodos manuais e automáticos. Rev Bras Eng Agrícola e Ambient 15:1123–1129. https://doi.org/10.1590/S1415-43662011001100003

    Article  Google Scholar 

  • Albuquerque CG, Montenegro SMGL, Montenegro AA de A, Fontes Júnior RV de P (2015) Recarga de aquífero aluvial sob uso agrícola. Águas Subterrâneas 29:60–71. https://doi.org/10.14295/ras.v29i1.27931

  • Alencar CAB, da Cunha FF, Martins CE et al (2009) Irrigação de pastagem: atualidade e recomendações para uso e manejo. Rev Bras Zootec 38:98–108. https://doi.org/10.1590/S1516-35982009001300012

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—Guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56. https://www.fao.org/docrep/x0490E/x0490e00.htm#Contents. Accessed 23 Feb 2018

  • ANA  (2017) Conjuntura dos recursos hídricos no Brasil 2017: Relatório Pleno/Agência Nacional de Águas. Agência Nacional de Águas - ANA, Brasília

    Google Scholar 

  • Asseng S, Ritchie JT, Smucker AJM, Robertson MJ (1998) Root growth and water uptake during water deficit and recovering in wheat. Plant Soil 201:265–273. https://doi.org/10.1023/A:1004317523264

    Article  Google Scholar 

  • Atta-Darkwa T, Kyei-Baffour N, Ofori E et al (2013) Quantification of groundwater recharge in the river Oda catchment using the watertable fluctuation method. Glob J Eng Des Technol 2:96–103

    Google Scholar 

  • Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crop Res 97:248–253. https://doi.org/10.1016/j.fcr.2005.10.005

    Article  Google Scholar 

  • Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12:423–428. https://doi.org/10.1029/WR012i003p00423

    Article  Google Scholar 

  • Brito GLM, Schuster HDM, Srinivasan VS (2009) Sustainability of the aquifer system of the sedimentary basin of the Peixe River in the semi-arid region of Brazil. In: Trends and sustainability of groundwater in highly stressed aquifers. Proceedings of Symposium HS.2 at the Joint Convention of the International Association of Hydrological Sciences (IAHS) and the International Association of Hydrogeologists (IAH) held in. IAHS Press, Hyderabad, pp 28–35

  • Brodie RS, Hostetler S (2005) A review of techniques for analysing baseflow from stream hydrographs NZHS-IAH-NZSSS 2005 conference. Auckland, New Zealand, pp 1–13

  • Cai Z, Ofterdinger U (2016) Analysis of groundwater-level response to rainfall and estimation of annual recharge in fractured hard rock aquifers, NW Ireland. J Hydrol 535:71–84. https://doi.org/10.1016/j.jhydrol.2016.01.066

    Article  Google Scholar 

  • Camargo RA, Couto EA, Alves LGS et al (2011) Aplicação de modelo de balanço hídrico BALSEQ para estimativa da infiltração profunda em região cárstica. Ambient Água-An Interdiscip J Appl Sci 6:303–317. https://doi.org/10.4136/ambi-agua.456

    Article  Google Scholar 

  • Campos JEG, Monteiro CF, Rodrigues LN (2006) Geologia e zoneamento hidrogeológico da bacia do rio Preto, DF/GO/MG–Documentos 172. Embrapa Cerrados, Planaltina-DF

    Google Scholar 

  • Carvalho VE de C, Rezende KS, Paes BST, et al (2014) Estimativa da Recarga em uma Sub-bacia Hidrográfica Rural Através do Método da Variação do Nível D-Água (VNA). Rev Bras Recur Hídricos 19:271–280. https://doi.org/10.21168/rbrh.v19n1.p271-280

  • Coelho G, Pontes LM, Batista ML, et al (2015) Relação entre o escoamento de base e os diferentes sistemas hidrogeológicos do Estado de Minas Gerais. Águas Subterrâneas 29:257–267. https://doi.org/10.14295/ras.v29i3.27977

  • Collischonn W, Fan FM (2013) Defining parameters for Eckhardt’s digital baseflow filter. Hydrol Process 27:2614–2622. https://doi.org/10.1002/hyp.9391

    Article  Google Scholar 

  • CONAB (2017) Calendário de Plantio e Colheita de Grãos no Brasil 2017. Companhia Nacional de Abastecimento (Conab), Brasília-DF

  • Cunha VCV (2017) Avaliação da interação entre águas subterrâneas e superficiais na bacia do Rio das Fêmeas, Sistema Aquífero Urucuia – Bahia. Dissertação (Mestrado em Ciência e Tecnologia das Radiações, Minerais e Materiais). Centro de Desenvolvimento da Tecnologia Nuclear

  • Delin GN, Healy RW, Lorenz DL, Nimmo JR (2007) Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA. J Hydrol 334:231–249. https://doi.org/10.1016/j.jhydrol.2006.10.010

    Article  Google Scholar 

  • Dias ACH, Santiago MC, Vieira BA, Nogueira L (2018) Perfuração Indiscriminada de Poços em Iracema/CE: Um Estudo Sobre o Paradoxo da Atual Crise Hídrica. Águas Subterrâneas 32:1–19. https://doi.org/10.14295/ras.v32i3.29167

  • Eckhardt K (2005) How to construct recursive digital filters for baseflow separation. Hydrol Process 19:507–515. https://doi.org/10.1002/hyp.5675

    Article  Google Scholar 

  • Elmarami H, Meyer H, Massann G (2017) Combined approach of isotope mass balance and hydrological water balance methods to constrain the sources of lake water as exemplified on the small dimictic lake Silbersee, northern Germany. Isotopes Environ Health Stud 53:184–197. https://doi.org/10.1080/10256016.2016.1206095

    Article  Google Scholar 

  • Fetter CW (2001) Applied hydrogeology, 4a. Prentice Hall, Inc., Upper Saddle River

    Google Scholar 

  • Flint AL, Flint LE, Kwicklis EM et al (2002) Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods. Hydrogeol J 10:180–204. https://doi.org/10.1007/s10040-001-0169-1

    Article  Google Scholar 

  • Galvão P, Hirata R, Conicelli B (2018) Estimating groundwater recharge using GIS-based distributed water balance model in an environmental protection area in the city of Sete Lagoas (MG), Brazil. Environ Earth Sci 77:1–19. https://doi.org/10.1007/s12665-018-7579-z

    Article  Google Scholar 

  • Gaspar (2006) Sistema Aqüífero Urucuia: Caracterização regional e propostas de gestão. Tese (Doutorado)–Instituto de Geociências, Universidade de Brasília, Brasília

  • Geoprobe (2002) Standard operating procedure-GW 1600 Pneumatic slug test kit Technical Kejr Inc, Salina, KS

  • Gheysari M, Sadeghi S, Loescher HW et al (2017) Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize. Agric Water Manag 182:126–138. https://doi.org/10.1016/j.agwat.2016.12.014

    Article  Google Scholar 

  • Gonçalves RD, Chang HK (2017) Modelo hidrogeológico do Sistema Aquífero Urucuia na bacia do Rio Grande (BA). Geociências (São Paulo) 36:205–220

    Google Scholar 

  • Gouweleeuw BT (2000) Satellite passive microwave surface moisture monitoring. Tese–Vrije Universiteit, Amsterdam. The Netherlands

  • Guardiola-Albert C, Martos-Rosillo S, Pardo-Igúzquiza E et al (2015) Comparison of recharge estimation methods during a wet period in a karst aquifer. Groundwater 53:885–895. https://doi.org/10.1111/gwat.12310

    Article  Google Scholar 

  • Guerra AF, Rodrigues GC, Rocha OC, Evangelista W (2003) Necessidade hídrica no cultivo de feijão, trigo, milho e arroz sob irrigação no bioma cerrado–Boletim de Pesquisa e Desenvolvimento 100. Embrapa Cerrados, Planaltina-DF

    Google Scholar 

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109. https://doi.org/10.1007/s10040-001-0178-0

    Article  Google Scholar 

  • Herrmann F, Keller L, Kunkel R et al (2015) Determination of spatially differentiated water balance components including groundwater recharge on the Federal State level—a case study using the mGROWA model in North Rhine-Westphalia (Germany). J Hydrol Reg Stud 4:294–312. https://doi.org/10.1016/j.ejrh.2015.06.018

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: a hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370. 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

  • Hu K, Awange JL et al (2017) Hydrogeological characterisation of groundwater over Brazil using remotely sensed and model products. Sci Total Environ 599–600:372–386. https://doi.org/10.1016/j.scitotenv.2017.04.188

    Article  Google Scholar 

  • Kambhammettu BVNP, King JP, Schmid W (2014) Grid-size dependency of evapotranspiration simulations in shallow aquifers: an optimal approach. J Hydrol Eng 19:4014018. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000957

    Article  Google Scholar 

  • Kim I, Lee J (2018) Prediction model for spatial and temporal variation of groundwater level based on River Stage. J Hydrol Eng 23:6018002. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001658

    Article  Google Scholar 

  • Linsley RK, Kohler MA, Paulhus JL (1982) Hydrology for engineers. McGraw-Hill, New York

    Google Scholar 

  • Lott DA, Stewart MT (2016) Base flow separation: a comparison of analytical and mass balance methods. J Hydrol 535:525–533. https://doi.org/10.1016/j.jhydrol.2016.01.063

    Article  Google Scholar 

  • Lubczynski MW, Gurwin J (2005) Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes-Sardon study case, Spain. J Hydrol 306:71–96. https://doi.org/10.1016/j.jhydrol.2004.08.038

    Article  Google Scholar 

  • Madlala T, Kanyerere T, Oberholster P, Xu Y (2019) Application of multi-method approach to assess groundwater–surface water interactions, for catchment management. Int J Environ Sci Technol 16:2215–2230. https://doi.org/10.1007/s13762-018-1819-3

    Article  Google Scholar 

  • Maneta MP, Torres M, Wallender WW et al (2009) Water demand and flows in the São Francisco River Basin (Brazil) with increased irrigation. Agric Water Manag 96:1191–1200. https://doi.org/10.1016/j.agwat.2009.03.008

    Article  Google Scholar 

  • Mattiuzi CDP, Kirchheim RE, Collischonn W, Fan FM (2015) Estimativa de recarga subterrânea a partir da separação de escoamento de base na Bacia Hidrográfica do Rio Ibicuí (América do Sul). Águas Subterrâneas 29:285–300. https://doi.org/10.14295/ras.v29i3.28487

  • Mazariegos JG, Walker JC, Xu X, Czimczik CI (2017) Tracing artificially recharged groundwater using water and carbon isotopes. Radiocarbon 59:407–421. https://doi.org/10.1017/RDC.2016.51

    Article  Google Scholar 

  • Maziero TA, Wendland E (2005) Avaliação da recarga subterrânea de bacias urbanas no município de São Carlos, SP. XIV Encontro Nacional de Perfuradores de Poços e II Simpósio de Hidrogeologia do Sudeste. Associação Brasileira de Águas Subterrâneas, Ribeirão Preto-SP, pp 1–18

    Google Scholar 

  • Meinzer OE (1923) The occurrence of groundwater in the United States with a discussion of principles. US Geol Surv Water Supply 321

  • Mello CR, Gomes NM, Silva AM, Junqueira Junior JA (2007) Modelagem de atributos físico-hídricos do solo numa bacia hidrográfica da região do Alto Rio Grande, MG. Rev Bras Cienc do Solo 31:845–852

    Article  Google Scholar 

  • Miranda ACR, Pruski FF, Martinez MA, Cecon PR (2014) Métodos de separação dos escoamentos superficial direto e subterrâneo: Estudo de caso para a bacia do Rio das Velhas. Rev Bras Recur Hídricos 19:169–181. https://doi.org/10.21168/rbrh.v19n2.p169-181

  • MMA (2013) Programa nacional de conservação e uso sustentável do bioma cerrado Programa cerrado sustentável. Ministério do Meio Ambiente-MMA, Brasília-DF

  • Moon SK, Woo NC, Lee KS (2004) Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. J Hydrol 292:198–209. https://doi.org/10.1016/j.jhydrol.2003.12.030

    Article  Google Scholar 

  • Nanteza J, Linagre CR, Thomas BF, Famiglietti JS (2016) Monitoring groundwater storage changes in complex basement aquifers: an evaluation of the GRACE satellites over East Africa. Water Resour Res 52:9542–9564. https://doi.org/10.1002/2016WR018846

    Article  Google Scholar 

  • Niazi A, Bentley LR, Hayashi M (2017) Estimation of spatial distribution of groundwater recharge from stream baseflow and groundwater chloride. J Hydrol 546:380–392. https://doi.org/10.1016/j.jhydrol.2017.01.032

    Article  Google Scholar 

  • Nóbrega RLB, Guzha AC, Torres GN et al (2017) Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLoS ONE 12:e0179414. https://doi.org/10.1371/journal.pone.0179414

    Article  Google Scholar 

  • Novo ME, Oliveira M, Martins T, Henriques MJ (2018) Projecto Bingo: O impacto das alterações climáticas na componente subterrânea do ciclo hidrológico. Recur Hídricos 39:59–74. https://doi.org/10.5894/rh39n2-cti3

    Article  Google Scholar 

  • Oliva A, Kiang CH, Caetano-Chang MR (2005) Determinação da condutividade hidráulica da formação Rio Claro: Análise comparativa através de análise granulométrica e ensaios com permeâmetro Guelph e testes de slug. Águas Subterrâneas 19:1–17. https://doi.org/10.14295/ras.v19i2.8223

  • Oliveira MM (2004) Aplicação de dois métodos diferentes para a estimativa da recarga de águas subterrâneas numa área de Estarreja. In: VII Congresso da Água. Associação Portuguesa dos Recursos Hídricos, Lisboa-Portugal

  • Oliveira PTS, Leite MB, Mattos T et al (2017) Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado. Ecohydrology 10:e1759. https://doi.org/10.1002/eco.1759

    Article  Google Scholar 

  • Oliveira RS, Bezerra L, Davidson EA et al (2005) Deep root function in soil water dynamics in cerrado savannas of central Brazil. Funct Ecol 19:574–581. https://doi.org/10.1111/j.1365-2435.2005.01003.x

    Article  Google Scholar 

  • Paiva GP (2006) Estimativa da recarga em uma unidade detrítica de uma micro-bacia do rio Piranga (MG). Dissertação (Mestrado em Engenharia Civil)-Universidade Federal de Viçosa

  • Paralta E, Oliveira MM, Lubczynsky M, Ribeiro LF (2003) Avaliação da recarga do Sistema Aquífero dos Gabros de Beja segundo os critérios múltiplos: disponibilidades hídricas e implicações agro-ambientais. In: VI Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa - 6° SILUSBA. Associação Brasileira de Recursos Hídricos, Praia, Cabo Verde, pp 495–510

  • Passos DP, Rodrigues LN, Cardoso WS et al (2009) Relação do uso do solo com a taxa de infiltração na Bacia Hidrográfica do Rio Buriti Vermelho-DF. XXXII Congresso Brasileiro de Ciência do Solo. Sociedade Brasileira de Ciência do Solo, Fortaleza-CE, pp 1–4

    Google Scholar 

  • Pazdro Z (1983) Hydrogeologia Ogólna. W.G, Warszawa

    Google Scholar 

  • Pettyjohn WA, Henning R (1979) Preliminary Estimates of Ground-Wter Recharge Rates, Related Streamflow and Water Quality in Ohio. Project completion report no. 552. Water Resources Center The Ohio State University, State of Ohio

  • Pontes LM, Coelho G, de Mello CR et al (2016) Avaliação de modelo de balanço hídrico com base na estimativa da recarga potencial. Ambient Água An Interdiscip J Appl Sci 11:915–928. https://doi.org/10.4136/1980-993X

    Article  Google Scholar 

  • Pruski FF, Ferreira PA, Ramos MM, Cecon PR (1997) Model to design level terraces. J Irrig Drain Eng 123:8–12. https://doi.org/10.1061/(ASCE)0733-9437

    Article  Google Scholar 

  • Rama F, Miotlinski K, Franco D, Corseuil HX (2018) Recharge estimation from discrete water-table datasets in a coastal shallow aquifer in a humid subtropical climate. Hydrogeol J 1887–1902. https://doi.org/10.1007/s10040-018-1742-1

  • Ramos SO, Araújo HA, Leal RLB et al (2016) Variação temporal do nível freático do aqüífero cárstico de Irecê—Bahia: contribuição para uso e gestão das águas subterrâneas no semi-árido. Rev Bras Geociências 37:227–233

    Article  Google Scholar 

  • Ribeiro JPM, Velásques LNM, Carvalho Filho CA (2017) Recarga e conexão hidráulica no sistema aquífero granular-fissural no Campus Pampulha da UFMG, Belo Horizonte, MG. Rev do Inst Geológico 38:17–30. https://doi.org/10.5935/0100-929X.20170002

    Article  Google Scholar 

  • Rodrigues LN (2016) Bacia Experimental do Rio Buriti Vermelho, na ecorregião do Planalto Central. In: Rodrigues LN, Schuler AE (eds) Água: Desafios para a sustentabilidade da agricultura., 1a. Embrapa, Brasília-DF, pp 233–255

  • Rodrigues LN, Marioti J, Vargas LMP, et al (2009) Bacia experimental do Rio Buriti Vermelho: instrumentação, monitoramento e análise preliminar de dados. In: XVIII Simpósio Brasileiro de Recursos Hídricos. Associação Brasileira de Recursos Hídricos, Campo Grande, MS, pp 1–19

  • Rohde MM, Edmunds WM, Freyberg D et al (2015) Estimating aquifer recharge in fractured hard rock: analysis of the methodological challenges and application to obtain a water balance (Jaisamand Lake Basin, India). Hydrogeol J 23:1573–1586. https://doi.org/10.1007/s10040-015-1291-9

    Article  Google Scholar 

  • deSalles LA, Lima JEFW, Roig HL, Malaquias JV (2018) Environmental factors and groundwater behavior in an agricultural experimental basin of the Brazilian central plateau. Appl Geogr 94:272–281. https://doi.org/10.1016/j.apgeog.2018.02.007

    Article  Google Scholar 

  • Santos HG, Jacomine PKT, Anjos LHC et al (2013) Sistema brasileiro de classificação de solos, 3a Embrapa Brasília-DF

  • Santos PS, Ferreira LG (2017) Análise descritiva dos aspectos biofísicos associados aos padrões de cobertura e uso da terra na bacia hidrográfica do Rio Vermelho, bioma Cerrado. GeoFocus Rev Int Cienc y Tecnol la Inf Geográfica 20:3–28. https://doi.org/10.21138/GF.395

  • Santos RM, Koide S (2016) Avaliação da Recarga de Águas Subterrâneas em Ambiente de Cerrado com Base em Modelagem Numérica do Fluxo em Meio Poroso Saturado. Rev Bras Recur Hídricos 21:451–465. https://doi.org/10.21168/rbrh.v21n2.p451-465

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39. https://doi.org/10.1007/s10040-0010176-2

    Article  Google Scholar 

  • Silva FCS, Sediyama T, Sediyama GC et al (2015) Manejo da Irrigação. In: Sediyama T, Silva F, Borem A (eds) Soja: Do plantio à colheita. Editora UFV, Viçosa-MG, pp 214–233

    Google Scholar 

  • Simon FW, Reginato PAR, Kirchheim RE, Troian GC (2017) Estimativa de recarga do Sistema Aquífero Guarani por meio da aplicação do método da variação da superfície livre na bacia do Rio Ibicuí-RS. Águas Subterrâneas 31:12–29. https://doi.org/10.14295/ras.v31i2.28631

  • Sloto RA, Crouse MY (1996) HYSEP: a computer program for streamflow hydrograph separation and analysis. U. S. Geological Survey. Water-Resources Investigations Report 96-4040, Lemoyne, Pennsylvania

  • Sophocleus M (2004) Groundwater recharge. In: Silveira L, Wohnlich S, Usunoff EJ (eds) Groundwater—encyclopedia of live support systems, (EOLSS). UNESCO Eolss Publishers, Oxford, pp 126–162

    Google Scholar 

  • Souza E, Pontes LM, Fernandes Filho EI et al (2019) Spatial and temporal potential groundwater recharge: the case of the Doce River Basin. Brazil Rev Bras Ciência do Solo. https://doi.org/10.1590/18069657rbcs20180010

    Article  Google Scholar 

  • Strahler AN (1964) Quantitative geomorphology of drainage basins and chanel networks. In: CHOW VT (ed) Handbook of applied hydrology. Mc GrawHill, New York, pp 439–476

  • Tilahun K, Merkel BJ (2009) Estimation of groundwater recharge using a GIS-based distributed water balance model in Dire Dawa, Ethiopia. Hydrogeol J 17:1443–1457. https://doi.org/10.1007/s10040-009-0455-x

    Article  Google Scholar 

  • Tucci CE (2012) Escoamento superficial. In: Tucci CE (ed) Hidrologia: Ciência e aplicação. 4a.reimp. Editora da UFRGS/ABRH, Porto Alegre-RS, pp 391–441

  • US-SCS (1972) National Engineering Handbook, section 4, Hydrology. U.S. Dept. of Agriculture, available from U. S. Government Printing Office, Washington-D.C.

  • Varni M, Comas R, Weinzettel P, Dietrich S (2013) Application of the water table fluctuation method to characterize groundwater recharge in the Pampa plain, Argentina. Hydrol Sci J 58:1445–1455. https://doi.org/10.1080/02626667.2013.833663

    Article  Google Scholar 

  • Visser A, Moran JE, Singleton MJ, Esser BK (2018) Importance of river water recharge to the San Joaquin Valley groundwater system. Hydrol Process 32:1202–1213. https://doi.org/10.1002/hyp.11468

    Article  Google Scholar 

  • Vu HV, Merkel BJ (2019) Estimating groundwater recharge for Hanoi. Vietnam Sci Total Environ 651:1047–1057. https://doi.org/10.1016/j.scitotenv.2018.09.225

    Article  Google Scholar 

  • Wendt DE, Rodrigues LN, Dijksma R, Dam JCV (2015) Assessing groundwater potencial use for expanding irrigation in the Buriti Vermelho watershed. Irriga 1:81–94

    Article  Google Scholar 

  • Yang L, Qi Y, Zheng C et al (2018) A modified water-table fluctuation method to characterize regional groundwater discharge. Water 10:1–16. https://doi.org/10.3390/w10040503

    Article  Google Scholar 

  • Yuan Y, Zeng G, Liang J et al (2015) Variation of water level in Dongting Lake over a 50-year period: implications for the impacts of anthropogenic and climatic factors. J Hydrol 525:450–456. https://doi.org/10.1016/j.jhydrol.2015.04.010

    Article  Google Scholar 

Download references

Funding

This study was supported by the Federal District Research Support Foundation (FAP-DF), Brazilian Agricultural Research Corporation (EMBRAPA Cerrados), the Federal University of Viçosa (UFV) and the Coordination for the Improvement of Higher Education Personnel (CAPES–Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaldo José Cambraia Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cambraia Neto, A.J., Rodrigues, L.N. Evaluation of groundwater recharge estimation methods in a watershed in the Brazilian Savannah. Environ Earth Sci 79, 140 (2020). https://doi.org/10.1007/s12665-020-8884-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-8884-x

Keywords

Navigation