Skip to main content

Advertisement

Log in

Hydrogeochemical investigation of Cr in the ultramafic rock-related water bodies of Loutraki basin, Northeast Peloponnese, Greece

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This research aims to determine the hydrogeochemical characteristics, origin, and geochemical evolution of the Cr enriched alkaline waters in the ultramafic rock-related water bodies of Loutraki basin in Northeast Peloponnese, Greece. The significance of the particular research lies in the fact that Cr occurrence raises concerns with respect to health risks associated with the utilization of such aquifers for drinking water supply. Therefore, the investigation of water–rock interaction processes leading to Cr mobilization in such environments is of great importance. A total of 41 water samples including groundwater from the alluvial and fractured aquifers as well as surface water were collected and analyzed for major and trace elements during the wet and dry seasons of 2015. Solid samples including soils, sediments and rocks were also collected to provide evidence of elemental mobilization due to water–rock interaction, with special focus on Cr. Τhe main Cr-bearing minerals identified were Cr-spinel, ferrichromite, magnetite, clinopyroxene, chlorite and serpentine. The observed dissolution textures within the magnetite rim and across the magnetite–chromite boundary indicate that these latter can be also active sources of Cr(III). Both groundwater and surface waters are of Mg–HCO3 type due to CO2-driven dissolution of serpentine minerals and Mg-carbonates/hydroxides. The formation of hydromagnesite aggregates is attributed to precipitation from Mg2+-rich alkaline waters. The highest Cr(VI) concentrations were measured in the alluvial aquifer (6.7–74.3 μg L−1) and the lowest in the fractured ophiolitic aquifer (1.9–14.3 μg L−1); while in surface water, the maximum measured Cr(VI) concentration was up to 3.9 μg L−1. Finally, the identification of Mn-rich hematite indicates that the oxidation of Cr(III) to Cr(VI) is probably performed by manganese–iron oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Research data are included in the Supplementary material.

References

  • Andrews JE, Stamatakis MG, Mitsis I, Donnelly T, Regueiroy González-Barros M, Fallick AE (2018) Stable isotope evidence for near-surface, low-temperature formation of Mg-(hydro)carbonates in highly altered Greek Mesozoic serpentinites. J Geol Soc London 175:361–375. https://doi.org/10.1144/jgs2017-083

    Article  Google Scholar 

  • Apollaro C, Fuoco I, Vespasiano G, De Rosa R, Cofone F, Miriello D, Bloise A (2018) Geochemical and mineralogical characterization of tremolite asbestos contained in the Gimigliano-Mount Reventino Unit (Calabria, south Italy). J Mediterranean Earth Sci 10(2018):5–15. https://doi.org/10.3304/JMES.2018.011

    Article  Google Scholar 

  • Apollaro C, Fuoco I, Brozzo G, De Rosa R (2019) Release and fate of Cr (VI) in the ophiolitic aquifers of Italy: the role of Fe (III) as a potential oxidant of Cr (III) sup- ported by reaction path modelling. Sci Total Environ. 660:1459–1471. https://doi.org/10.1016/j.scitotenv.2019.01.103

    Article  Google Scholar 

  • Augustithis S, Mposkos E (1982) Differential leaching of the Fe and Cr from Chromite grains in Laterites and Birbirites. UNESCO Symp on Metallogeny of Mafic and Ultramafic Complexes. Athens, 1980, 2 14–226

  • Beaumont JJ, Sedman RM, Reynolds SD, Sherman CD, Li L, Howd RA, Sandy MS, Zeise L, Alexeeff GV (2008) Cancer mortality in a Chinese pop- ulation exposed to hexavalent chromium in drinking water. Epidemiology 19(1):12–23

    Article  Google Scholar 

  • Bertolo R, Bourotte C, Marcolan L, Oliveira S, Hirata R (2011) Anomalous content of chromium in a Cretaceous sandstone aquifer of the Bauru Basin, state of Sao Paulo Brazil. J South Am Earth Sci 31:69–80. https://doi.org/10.1016/j.jsames.2010.10.002

    Article  Google Scholar 

  • Bloise A, Ricchiuti C, Giorno E, Fuoco I, Zumpano P, Miriello D, Apollaro C, Crispini A, De Rosa R, Punturo R (2019) Assessment of naturally occurring asbestos in the area of episcopia (Lucania, Southern Italy). Fibers 7:45

    Article  Google Scholar 

  • Bonifacio E, Zanini E, Boero V, Franchini-Angela M (1997) Pedogenesis in a soil catena on serpentinite in north-western Italy. Geoderma 75:33–51. https://doi.org/10.1016/S0016-7061(96)00076-6

    Article  Google Scholar 

  • Bornovas I, Eleftheriou A, Gaitanakis P, Rondogianni T, Simaiakis K, Tsaila-Monopoli S, Mettos A (1984) Geological map of Greece, 1:50.000 scale, Kaparellion sheet. The Institute of Geological, and Mining Exploration (IGME), Athens

  • Boschetti T, Toscani L (2008) Springs and streams of the Taro-Ceno Valleys (Northern Apennine, Italy): Reaction path modeling of waters interacting with serpentinized ultramafic rocks. Chem Geol 257:76–91. https://doi.org/10.1016/j.chemgeo.2008.08.017

    Article  Google Scholar 

  • Bruni J, Canepa M, Chiodini G, Cioni R, Cipolli F, Longinelli A, Zuccolini MV (2002) Irreversible water–rock mass transfer accompanying the generation of the neutral, Mg–HCO3 and high-pH, Ca–OH spring waters of the Genova province Italy. Appl Geochem 17(4):455–474

    Article  Google Scholar 

  • Burkhard DJM (1993) Accessory chromium spinels: Their coexistence and alteration in serpentinites. Geochim Cosmochim Acta 57:1297–1306. https://doi.org/10.1016/0016-7037(93)90066-6

    Article  Google Scholar 

  • Chavagnac V, Monnin C, Ceuleneer G, Boulart C, Hoareau G (2013) Characterization of hyperalkaline fluids produced by low- temperature serpentinization ofmantle peridotites in the Oman and Ligurian ophiolites. Geochem Geophys Geosyst 14(7):2496–2516. https://doi.org/10.1002/ggge.20147

    Article  Google Scholar 

  • Cipolli F, Gambardella B, Marini L, Ottonello G, Zuccolini MV (2004) Geochemistry ofhigh-pHwaters from serpentinites ofthe Gruppo di Voltri (Genova, Italy) and reaction path modeling ofCO2 sequestra- tion in serpentinite aquifers. Appl Geochem 19:787–802. https://doi.org/10.1016/j.apgeochem.2003.10.007

    Article  Google Scholar 

  • Critelli T, Vespasiano G, Apollaro C, Muto F, Marini L, DeRosa R (2015) Hydrogeochemical study of an ophiolitic aquifer: a case study of Lago (Southern Italy, Calabria). Environ Earth Sci 74:533–543. https://doi.org/10.1007/s12665-015-4061-z

    Article  Google Scholar 

  • D’Alessandro W, Brusca L, Kyriakopoulos K, Rotolo S, Michas G, Minio M, Papadakis G (2006) Diffuse and focused carbon dioxide and methane emissions from the Sousaki geothermal system. Greece Geophys Res Lett 33:1–5. https://doi.org/10.1029/2006GL025777

    Article  Google Scholar 

  • Daugherty ML (1992) Toxicity Summary for Chromium. Oak Ridge National Laboratory Chemical Hazard Evaluation and Communication Group, Oak Ridge, TN

    Google Scholar 

  • Demer S, Elitok Ö, Memiş Ü (2019) Origin and geochemical evolution of groundwaters at the northeastern extend of the active Fethiye-Burdur fault zone within the ophiolitic Teke nappes SW Turkey. Arabian J Geosci 12(24):783

    Article  Google Scholar 

  • Dermatas D, Mpouras T, Chrysochoou M, Panagiotakis I, Vatseris C, Linardos N, Theologou E, Boboti N, Xenidis A, Papassiopi N, Sakellariou L (2015) Origin and concentration profile of chromium in a Greek aquifer. J Hazard Mater 281:35–46. https://doi.org/10.1016/j.jhazmat.2014.09.050

    Article  Google Scholar 

  • Dotsika E, Poutoukis D, Raco B (2010) Fluid geochemistry of the Methana Peninsula and Loutraki geothermal area Greece. J Geochemical Explor 104:97–104. https://doi.org/10.1016/j.gexplo.2010.01.001

    Article  Google Scholar 

  • Eary LE (1989) Rai D (1988b) Kinetics of chromate reduction by ferrous ions derived from hematite and biotite at 25 °C. Amer I Sci 289:180–213. https://doi.org/10.2475/ajs.289.2.180

    Article  Google Scholar 

  • Economou-Eliopoulos M, Frei R, Atsarou C (2014) Application of chromium stable isotopes to the evaluation of Cr (VI) contamination in groundwater and rock leachates from central Euboea and the Assopos basin (Greece). Catena 122:216–228

    Article  Google Scholar 

  • Economou-Eliopoulos M, Megremi I, Vasilatos C, Frei R, Mpourodimos I (2017) Geochemical constraints on the sources of Cr(VI) contamination in waters of Messapia (Central Evia) Basin. Appl Geochem 84:13–25. https://doi.org/10.1016/j.apgeochem.2017.05.015

    Article  Google Scholar 

  • Fandeur D, Juillot F, Morin G, Livi L, Cognigni A, Webb SM, Ambrosi JP, Fritsch E, Guyot F, Brown GE (2009) XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia. Environ Sci Technol 43:7384–7390. https://doi.org/10.1021/es900498r

    Article  Google Scholar 

  • Fantoni D, Brozzo G, Canepa M, Cipolli F, Marini L, Ottonello G, Vetuschi Zuccolini M (2002) Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environ Geol 42:871–882. https://doi.org/10.1007/s00254-002-0605-0

    Article  Google Scholar 

  • Fendorf SE (1995) Surface reactions of chromium in soils and waters. Geoderma 67:55–71. https://doi.org/10.1016/0016-7061(94)00062-F

    Article  Google Scholar 

  • Fendorf SE, Zasoski RJ (1992) Chromium(III) oxidation by d-MnO2.1. Character Environ Sci Technol 26:79–85

    Article  Google Scholar 

  • Garnier J, Quantin C, Guimarães E, Garg VK, Martins ES, Becquer T (2009) Understanding the genesis of ultramafic soils and catena dynamics in Niquelândia, Brazil. Geoderma 151:204–214. https://doi.org/10.1016/j.geoderma.2009.04.020

    Article  Google Scholar 

  • Gautier Q, Bénézeth P, Mavromatis V, Schott J (2014) Hydromagnesite solubility product and growth kinetics in aqueous solution from 25 to 75°C. Geochim Cosmochim Acta 138:1–20. https://doi.org/10.1016/j.gca.2014.03.044

    Article  Google Scholar 

  • Giampouras M, Garrido CJ, Bach W, Los C, Fussmann D, Monien P, Garcia-Ruiz JM (2019) On the controls of mineral assemblages and textures in alkaline springs, Samail Ophiolite Oman. Chem Geol. https://doi.org/10.1016/j.chemgeo.2019.119435

    Article  Google Scholar 

  • Güler C, Thyne GD, McCray JE, Turner KA (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10(4):455–474

    Article  Google Scholar 

  • Güler C, Thyne GD, Tağa H, Yıldırım Ü (2017) Processes governing alkaline groundwater chemistry within a fractured rock (ophiolitic melange) aquifer underlying a seasonally inhabited headwater area in the Aladağlar range (Adana, Turkey). Geofluids. https://doi.org/10.1155/2017/3153924

    Article  Google Scholar 

  • Guthrie G (2001) Geochemical aspects of the carbonation of magnesium silicates in an aqueous medium (No. LA-UR-01–1429). Los Alamos National Lab., NM (US)

  • Hamilton JL, Wilson SA, Morgan B, Turvey CC, Paterson DJ, Jowitt SM, Southam G (2018) Fate of transition metals during passive carbonation of ultramafic mine tailings via air capture with potential for metal resource recovery. Int J Greenhouse Gas Control 71:155–167

    Article  Google Scholar 

  • Hausladen DM, Alexander-Ozinskas A, McClain C, Fendorf S (2018) Hexavalent chromium sources and distribution in California groundwater. Environ Sci Technol 52(15):8242–8251

    Article  Google Scholar 

  • Izbicki JA, Wright MT, Seymour WA, McCleskey RB, Fram MS, Belitz K, Esser BK (2015) Cr(VI) occurrence and geochemistry in water from public-supply wells in California. Appl Geochem 63:203–217. https://doi.org/10.1016/j.apgeochem.2015.08.007

    Article  Google Scholar 

  • Kaprara E, Kazakis N, Simeonidis K, Coles S, Zouboulis AI, Samaras P, Mitrakas M (2015) Occurrence of Cr(VI) in drinking water of Greece and relation to the geological background. J Hazard Mater 281:2–11. https://doi.org/10.1016/j.jhazmat.2014.06.084

    Article  Google Scholar 

  • Kazakis N, Kantiranis N, Voudouris KS, Mitrakas M, Kaprara E, Pavlou A (2015) Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater. Sci Total Environ 514:224–238. https://doi.org/10.1016/j.scitotenv.2015.01.080

    Article  Google Scholar 

  • Kelemen PB, Matter J (2008) In situ carbonation of peridotite for CO2 storage. Proc Natl Acad Sci 105(45):17295–17300

    Article  Google Scholar 

  • Kelepertzis E, Galanos E, Mitsis I (2013) Origin, mineral speciation and geochemical baseline mapping of Ni and Cr in agricultural topsoils of Thiva valley (central Greece). J Geochem Explor 125:56–68

    Article  Google Scholar 

  • Kounis D, Vitoriou-Georgouli A (2003) Hydrogeological Survey regarding the hydrological balance of the metallic aquifer of Loutraki area. Institute of Geology and Mineral Exploration (IGME), Athens (in Greek)

  • Langone A, Baneschi I, Boschi C, Dini A, Guidi M, Cavallo A (2013) Serpentinite-water interaction and chromium(VI) release in spring waters: Examples from Tuscan ophiolites. Ofioliti 38:41–57. https://doi.org/10.4454/ofioliti.v38i1.415

    Article  Google Scholar 

  • Lelli M, Grassi S, Amadori M, Franceschini F (2014) Natural Cr (VI) contamination of groundwater in the Cecina coastal area and its inner sectors (Tuscany, Italy). Environm Earth Sci 71(9):3907–3919. https://doi.org/10.1007/s12665-013-2776-2

    Article  Google Scholar 

  • Lilli MA, Nikolaidis NP, Karatzas GP, Kalogerakis N (2019) Identifying the controlling mechanism of geogenic origin chromium release in soils. J Hazard Mater 366:169–176. https://doi.org/10.1016/j.jhazmat.2018.11.090

    Article  Google Scholar 

  • Margiotta S, Mongelli G, Summa V, Paternoster M, Fiore S (2012) Trace element distribution and Cr(VI) speciation in Ca-HCO 3 and Mg-HCO 3 spring waters from the northern sector of the Pollino massif, southern Italy. J Geochemical Explor. https://doi.org/10.1016/j.gexplo.2012.01.006

    Article  Google Scholar 

  • Marques JM, Carreira PM, CarvalhoMR MMJ, GoffFE BastoMJ, Graça RC, Aires-Barros L, Rocha L (2008) Origins of high pH mineral waters from ultramafic rocks, Central Portugal. Appl Geochem 23:3278–3289. https://doi.org/10.1016/j.apgeochem.2008.06.029

    Article  Google Scholar 

  • McClain CN, Maher K (2016) Chromium fluxes and speciation in ultramafic catchments and global rivers. Chem Geol 426:135–157

    Article  Google Scholar 

  • McClain CN, Fendorf S, Webb SM, Maher K (2017) Quantifying Cr (VI) production and export from serpentine soil of the California coast range. Environ Sci Technol 51(1):141–149

    Article  Google Scholar 

  • McClain CN, Fendorf S, Johnson ST, Menendez A, Maher K (2019) Lithologic and redox controls on hexavalent chromium in vadose zone sediments of California’s Central Valley. Geochim Cosmochim Acta 265:478–494

    Article  Google Scholar 

  • Mills CT, Morrison JM, Goldhaber MB, Ellefsen KJ (2011) Chromium (VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr (VI) to groundwater. Appl Geochem 26(8):1488–1501

    Article  Google Scholar 

  • Moraetis D, Al-Suhai AS, Pracejus B, Pyrgaki K, Argyraki A, Dermatas D (2020) Origin of Cr in Alluvial and Aeolian Sediments and Ultramafic Rocks in Sultanate of Oman: Magnetic Fractionation and Sunlight Effect. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-020-02931-9

    Article  Google Scholar 

  • Moretti I, Sakellariou D, Lykousis V, Micarelli L (2003) The Gulf of Corinth: An active half graben? J Geodyn 36:323–340. https://doi.org/10.1016/S0264-3707(03)00053-X

    Article  Google Scholar 

  • Morrison J, Goldhaber M, Mills Christopher, Breit G, Hooper R, Holloway J, Diehl S, Ranville J (2015) Weathering and transport of chromium and nickel from serpentinite in the coast range ophiolite to the Sacramento Valley, Ca, USA. Elsevier 61: 72–86. https://doi.org/10.1016/j.apgeochem.2015.05.01

  • Oze C, Fendorf S, Bird DK, Coleman RG (2004) Chromium geochemistry of serpentine soils. Int Geol Rev 46(2):97–126

    Article  Google Scholar 

  • Oze C, Bird DK, Fendorf S (2007) Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc Natl Acad Sci U S A 104:6544–6549. https://doi.org/10.1073/pnas.0701085104

    Article  Google Scholar 

  • Pyrgaki K, Krassakis P, Gemeni V, Koukouzas N, Argyraki A, Voudouris K (2019) Seasonal and Temporal Variation of the Piezometric Level in the Alluvial Aquifer of Loutraki (Korinthia), with the Use of GIS Mapping Techniques. Bulletin of the Geological Society of Greece, Sp. Pub. 7, Ext. Abs. GSG2019–161

  • Richard FC, Bourg ACM (1991) Aqueous geochemistry of chromium: a review. Water Res 25:807–816

    Article  Google Scholar 

  • Robles-Camacho J, Armienta M (2000) Natural chromium contamination of groundwater at León Valley México. J Geochemical Explor 68:167–181. https://doi.org/10.1016/S0375-6742(99)00083-7

    Article  Google Scholar 

  • Sedman RM, Beaumont J, McDonald TA, Reynolds S, Krowech G, Howd R (2006) Review of the evidence regarding carcinogenicity of hexavalent chromium in drinking water. J Environ Sci Health Part C 24(1):155–182

    Article  Google Scholar 

  • Stamatakis MG, Mitsis I (2013) The occurrences of Mg-hydroxycarbonates in serpentinites of the western section of the South Aegean volcanic arc (West Attica peninsula-Northeastern Argolis peninsula), Greece. Bull Geol Soc Greece 47(1):427–437

    Article  Google Scholar 

  • Stamatis, G, Voudouris, K., (2000). Delineation of protection zones according to hydrogeological criteria: the case study of Loutraki alluvial aquifer. Digital Library of Theophrastus, Mineral Wealth J 116: 13–36 (in Greek)

  • USEPA, 2014. Toxic and priority pollutants under the clean water act. Available at: https://www.epa.gov/eg/toxicandpriority-pollutants-under-clean-water-act#priority. Accessed 21 Nov 2019

  • Ulrich M, Muñoz M, Guillot S, Cathelineau M, Picard C, Quesnel B, Boulvais P, Couteau C (2014) Dissolution-precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite. Contrib Mineral Petrol 167:1–19. https://doi.org/10.1007/s00410-013-0952-8

    Article  Google Scholar 

  • Vakondios L (1996) Study of the chromite metallogenesis associated with Mediterranean type ophiolites. An example from Tinos Island and Gerania Mt., Attica, Greece. PhD thesis, University of Patras, Patras (in Greek)

  • Vassilakis E, Royden L, Papanikolaou D (2011) Kinematic links between subduction along the Hellenic trench and extension in the Gulf of Corinth, Greece: a multidisciplinary analysis. Earth Planet Sci Lett 303(1–2):108–120

    Article  Google Scholar 

  • Voutsis N, Kelepertzis E, Tziritis E, Kelepertsis A (2015) Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. J Geochemical Explor 159:79–92. https://doi.org/10.1016/j.gexplo.2015.08.007

    Article  Google Scholar 

  • Wilson S, Dipple G, Power I, Thom J, Anderson R, Raudsepp M, Gabites J, Southam G (2009) Carbon Dioxide Fixation within Mine Wastes of Ultramafic-Hosted Ore Deposits: Examples from the Clinton Creek and Cassiar Chrysotile Deposits Canada. Economic Geol 104:95–112

    Article  Google Scholar 

  • Wu WC, Wang SL, Tzou YM, Chen JH, Wang MK (2007) The adsorption and catalytic transformations of chromium on Mn substituted goethite. Appl Catal B 75(3–4):272–280

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director of the Municipal Directorate for Water and Sewage of Loutraki–Agioi Theodoroi, Mr. Anastasios Mastrantonakis as well as the technical staff of the Service for providing access to the Municipal boreholes and for their help during groundwater sampling. Professor Anthimos Xenidis and the staff of the Laboratory of Metallurgy, National and Technical University of Athens, are also thanked for performing the XRF analysis of soils and rocks. In addition, special thanks are expressed to the three anonymous reviewers for their constructive comments and suggestions that significantly improved the quality of the paper as well as to the Editor-in-Chief Prof. Olaf Kolditz for his careful editorial handling.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantina Pyrgaki.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2637 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyrgaki, K., Argyraki, A., Botsou, F. et al. Hydrogeochemical investigation of Cr in the ultramafic rock-related water bodies of Loutraki basin, Northeast Peloponnese, Greece. Environ Earth Sci 80, 62 (2021). https://doi.org/10.1007/s12665-020-09342-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09342-3

Keywords

Navigation