Skip to main content

Advertisement

Log in

Effects of freezing–thawing cycle on the daily evapotranspiration of alpine meadow soil in Qinghai–Tibet Plateau

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The study of the diurnal response mechanism of the actual evapotranspiration (ETa) to the environment in the permafrost regions of the Qinghai–Tibet Plateau (QTP) using the LYS30 micro-evaporation instrument found that there are different feedbacks to the ETa under freezing and thawing cycles. The ETa process during the winter cooling period (WC) and the spring warming period (SW) is snow and ice sublimation and is mainly affected by the vapour pressure deficit (VPD). In the summer thawing period (ST), ETa can reach the maximum value when all meteorological elements reach a certain range of change at the same time, while ETa will decrease when the meteorological elements are not qualified. During the autumn freezing period (AF), the amount of condensate reached a maximum at 7:00, and due to the sudden change in meteorological elements at 9:00, the ETa increased rapidly at a rate higher than the condensation rate that occurred between 7:00 and 9:00. We also found that in different stages of freezing and thawing, the two physical processes of condensation and evaporation alternated in 1 day, with the process of evaporation occurring during the day and the condensation process occurring during the night. The diurnal response mechanism of the ETa to the environment in the permafrost regions of the QTP is expected to reveal the mechanism of soil hydrological processes and will provide a theoretical and scientific basis for water balance analysis and ecological environment protection in permafrost regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agam N, Berliner PR (2006) Dew formation and water vapor adsorption in semi-arid environments—a review. J Arid Environ 65(4):572–590

    Google Scholar 

  • Assouline S, Narkis K (2017) Evaporation from soil containers with irregular shapes. Water Resour Res 53(11):8795–8806

    Google Scholar 

  • Chen B, Ouyang Z (2010) Prediction of winter wheat evapotranspiration based on BP neural networks. Trans Chin Soc Agric Eng 26(4):81–86

    Google Scholar 

  • Chen BL, Luo SQ, Lü SH et al (2014) Effects of the soil freeze-thaw process on the regional climate of the Qinghai–Tibet Plateau. Clim Res 59(3):243–257

    Google Scholar 

  • Chen HS, Kang YH (1992) Condensed vapor and its role in the ecological environment of Shapotou region. J Arid Land Resour Environ 6(2):63–72

    Google Scholar 

  • Chen SB, Liu YF, Thomas A (2006) Climatic change on the Tibetan Plateau: potential evapotranspiration trends from 1961–2000. Clim Change 76(3–4):291–319

    Google Scholar 

  • Dey P, Mishra A (2017) Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions. J Hydrol 548:278–290

    Google Scholar 

  • Dong SK, Tang L, Wang XX et al (2013) Minimum plot size for estimating plant biodiversity of the alpine grasslands on the Qinghai-Tibetan Plateau. Biodivers Sci 21(6):651–657

    Google Scholar 

  • Fang J, Ding YJ (2005) Study of the condensation water and its effect factors on the fringes of Desert Oasis. J Glaciol Geocryol 27(5):755–760

    Google Scholar 

  • Feng JM, Wang T, Xie CW (2006) Eco-environmental degradation in the source region of the Yellow River, Northeast Qinghai–Xizang Plateau. Environ Monit Assess 122(1–3):125–143

    Google Scholar 

  • Fu Q, Hou RJ, Li TX (2018) The functions of soil water and heat transfer to the environment and associated response mechanisms under different snow cover conditions. Geoderma 325:9–17

    Google Scholar 

  • Gao ZY, Niu FJ, Wang YB et al (2017) Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China. Sci Total Environ 574:751–759

    Google Scholar 

  • Gao ZY, Wang YB, Liu GH (2014) Effect of thermokarst lake on soil saturated hydraulic conductivity and analysis of its influenced factors. Trans Chin Soc Agric Eng 30(20):109–117

    Google Scholar 

  • Goyal RK (2004) Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India). Agric Water Manag 69(1):1–11

    Google Scholar 

  • Guglielmin M, Fratte MD, Cannone N (2014) Permafrost warming and vegetation changes in continental Antarctica. Environ Res Lett 9(4):045001. https://doi.org/10.1088/1748-9326/9/4/045001

    Article  Google Scholar 

  • Han SP, Jing JH, Jing L et al (2007) Observation and research on temperature field and coagulating water. Acta Geosci Sin 28(5):482–487

    Google Scholar 

  • Hilbich C, Hauck C, Hoelzle M et al (2008) Monitoring mountain permafrost evolution using electrical resistivity tomography: a 7-year study of seasonal, annual, and long-term variations at Schilthorn, Swiss Alps. J Geophys Res Earth Surf 113:F01S90. https://doi.org/10.1029/2007JF000799

    Article  Google Scholar 

  • Huang DQ, Qian YF (2006) Impact of evaporation of the large-scale condensation precipitation in dropping process on simulated climate properties. Chin J Atmos Sci 30(6):1160–1168

    Google Scholar 

  • Jin HJ, Li SX, Cheng GD et al (2000) Permafrost and climatic change in China. Global Planet Change 26(4):387–404

    Google Scholar 

  • Jing YH, Shen HF, Li XH et al (2019) A two-stage fusion framework to generate a spatio–temporally continuous MODIS NDSI product over the Tibetan Plateau. Remote Sens 11(19):2261

    Google Scholar 

  • Li CJ, Wang GX, Sun XY et al (2012) Dynamic characteristics of condensed water in soils of Fenghuoshan basin in Qinghai–Tibet Plateau. Bull Soil Water Conserv 32(6):80–83

    Google Scholar 

  • Li XP, Wang L, Chen DL et al (2014) Seasonal evapotranspiration changes (1983–2006) of four large basins on the Tibetan Plateau. J Geophys Res Atmos 119(23):13079–13095

    Google Scholar 

  • Li YS, Wang GX, Ding YJ et al (2008) Spatial heterogeneity of soil moisture in alpine meadow area of the Qinghai-Xizang Plateau. Adv Water Sci 9(1):61–67

    Google Scholar 

  • Liu GS, Wang GX, Sun XY et al (2015) The response of soil moisture in swamp meadow in the source regions of the Yangtze River to artificially warming. J Glaciol Geocryol 37(3):668–675

    Google Scholar 

  • Liu X, Yang WJ, Zhao HP et al (2019) Effects of the freeze-thaw cycle on potential evapotranspiration in the permafrost regions of the Qinghai–Tibet Plateau, China. Sci Total Environ 687:257–266

    Google Scholar 

  • Luo LH, Ma W, Zhuang YL et al (2018) The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai–Tibet Engineering Corridor. Ecol Ind 93:24–35

    Google Scholar 

  • Luo SQ, Lü SH, Zhang Y (2009) Development and validation of the frozen soil parameterization scheme in Common Land Model. Cold Reg Sci Technol 55(1):130–140

    Google Scholar 

  • Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438(7066):347–350

    Google Scholar 

  • Ning TT, Li Z, Feng Q (2018) Comparison of the effectiveness of four Budyko-based methods in attributing long-term changes in actual evapotranspiration. Sci Rep 8(1):12665. https://doi.org/10.1038/s41598-018-31036-x

    Article  Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072

    Google Scholar 

  • Qiu J (2008) China: the third pole. Nat News 454(7203):393–396

    Google Scholar 

  • Ran YH, Li X, Cheng GD (2018) Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. Cryosphere 12(2):595–608

    Google Scholar 

  • Roderick ML, Farquhar GD (2011) A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour Res 47(12):W00G07. https://doi.org/10.1029/2010WR009826

    Article  Google Scholar 

  • Shang ZH, Gibb MJ, Leiber F et al (2014) The sustainable development of grassland-livestock systems on the Tibetan plateau: problems, strategies and prospects. Rangel J 36(3):267–296

    Google Scholar 

  • Shen MG, Piao SL, Jeong SJ et al (2015) Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc Natl Acad Sci 112(30):9299–9304

    Google Scholar 

  • Strasser U, Bernhardt M, Weber M et al (2008) Is snow sublimation important in the alpine water balance? Cryosphere 2(1):53–66

    Google Scholar 

  • Sun HL, Zheng D, Yao TD et al (2012) Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geogr Sin 67(1):3–12

    Google Scholar 

  • Sun SB, Chen BZ, Shao QQ et al (2017) Modeling evapotranspiration over China’s landmass from 1979 to 2012 using multiple land surface models: evaluations and analyses. J Hydrometeorol 18(4):1185–1203

    Google Scholar 

  • Thomas A (2008) Development and properties of 0.25-degree gridded evapotranspiration data fields of China for hydrological studies. J Hydrol 358(3–4):145–158

    Google Scholar 

  • Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Clim 24(18):4907–4924

    Google Scholar 

  • Wang JB, Huang M, Lin XH (2012) Review on Carbon Budget of the Grassland Ecosystems on the Qinghai–Tibet Plateau. Progr Geogr 31(1):123–128

    Google Scholar 

  • Wang LH, He XB, Ding YJ (2018) Characteristics and influence factors of the evaporanspiration from alpine meadow in central Qinghai–Tibet Plateau. J Glaciol Geocryol 39(6):1–6

    Google Scholar 

  • Wang XX (2014) Advances in separating effects of climate variability and human activity on stream discharge: an overview. Adv Water Resour 71:209–218

    Google Scholar 

  • Wang YB, Sun Z, Sun Y (2018) Effects of a thaw slump on active layer in permafrost regions with the comparison of effects of thermokarst lakes on the Qinghai-Tibet Plateau, China. Geoderma 314:47–57

    Google Scholar 

  • Wang GX, Zhang YS (2016) Ecological hydrology in the cold region: theory and practice. Science Press, Beijing

    Google Scholar 

  • Wu JC, Sheng Y, Wu QB et al (2009) Discussion on the possibility of taking ground ice in permafrost regions as water sources under climate warming. J Glaciol Geocryol 31(2):350–356

    Google Scholar 

  • Xu XD, Zhao TL, Lu CG et al (2014) Characteristics of the water cycle in the atmosphere over the Tibetan Plateau. Acta Meteorol Sin 72(6):1079–1095

    Google Scholar 

  • Yang MX, Yao TD, Ding YJ et al (1999) The daily variation of the soil temperature in different seasons at site D110 in the Northern part of Xizang Plateau. Sci Geogr Sci 19(6):570–574

    Google Scholar 

  • Yang MX, Yao TD, Gou XH et al (2007) Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau. Chin Sci Bull 52(1):136–139

    Google Scholar 

  • Yang Y, Chen RS, Ji XB et al (2010) Heat and water transfer processes on alpine meadow frozen grounds of Heihe mountainous in Northwest China. Adv Water Sci 21(1):30–34

    Google Scholar 

  • Yao TD, Thompson LG, Mosbrugger V et al (2012) Third pole environment (TPE). Environ Dev 3:52–64

    Google Scholar 

  • Yao TD, Thompson L, Yang W et al (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change 2:663–667

    Google Scholar 

  • Zhang YQ, Liu CM, Tang YH et al (2007) Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J Geophys Res Atmos. https://doi.org/10.1029/2006JD008161

    Article  Google Scholar 

  • Zhao L, Cheng GD, Li SX et al (2000) Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chin Sci Bull 45(23):2181–2187

    Google Scholar 

  • Zhu GF, He YQ, Pu T et al (2012) Spatial distribution and temporal trends in potential evapotranspiration over Hengduan Mountains region from 1960 to 2009. J Geogr Sci 22(1):71–85

    Google Scholar 

  • Zou DF, Zhao L, Sheng Y et al (2017) A new map of the permafrost distribution on the Tibetan Plateau. Cryosphere 11(6):2527–2542

    Google Scholar 

Download references

Acknowledgements

The project supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (Grant No. 2019QZKK0905). The National Natural Science Foundation of China (Grant No. 41877149) and the State Key Laboratory of Frozen Soil Engineering (SKLFSE201911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibo Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Data availability statement

Research data are not shared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, Y., Yang, W. et al. Effects of freezing–thawing cycle on the daily evapotranspiration of alpine meadow soil in Qinghai–Tibet Plateau. Environ Earth Sci 79, 533 (2020). https://doi.org/10.1007/s12665-020-09290-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09290-y

Keywords

Navigation