Skip to main content

Advertisement

Log in

Monitoring of heavy metal contamination in soils and terrestrial isopods sampled from the industrialized areas of Sfax (southeastern Tunisia)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

To evaluate the influence of soil contamination on the distribution of terrestrial isopods, species richness, relative abundance, and diversity, various indices were studied in 20 sampling sites from five industrial areas located in Sfax (SE Tunisia). The following hypotheses were tested: (1) is isopod diversity affected by soil properties? (2) What are the environmental factors that influence the isopod distribution? A total of 445 individuals were sampled and eight species of terrestrial isopods were identified. Porcellionides pruinosus was the most abundant species (38%); however, the highest specific richness per area was equal to four species. To evaluate the impact of metal contamination on isopod distribution, cadmium (Cd), lead (Pb), zinc (Zn), copper (Cu), and iron (Fe) concentrations were measured in soils and terrestrial isopods. Moreover, multivariate analyses revealed a negative correlation between heavy metal concentrations and ecological parameters suggesting an impact of the contamination degree on biodiversity. In addition, to characterize the heavy metal accumulation in isopods, the bioaccumulation factor (BAF) was determined and revealed that Cu and Zn were the most accumulated elements. Results showed that for all species, the order of the BAF values is as follows: Cu ≫ Zn ≫ Cd > Pb > Fe. On the contrary, all species seemed to be deconcentrators of Fe and Cd, with some exceptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andre J, Stürzenbaum SR, Kille P, Morgan AJ, Hodson ME (2010) Metal bioaccumulation and cellular fractionation in an epigeic earthworm (Lumbricus rubellus): the interactive influences of population exposure histories, sitespecific geochemistry and mitochondrial genotype. Soil Biol Biochem 42:1566–1573. https://doi.org/10.1016/j.soilbio.2010.05.029

    Article  Google Scholar 

  • Arnold RE, Hodson ME, Langdon CJ (2008) A Cu tolerant population of the earthworm Dendrodrilus rubidus (Savigny, 1862) at Coniston Copper Mines, UK. Environ Pollut 152:713–722. https://doi.org/10.1016/j.envpol.2007.06.048

    Article  Google Scholar 

  • Becquer T, Dai J, Quantin C, Lavelle P (2005) Sources of bioavailable heavy metals for earthworms from a Zn-, Pb- and Cd-contaminated soil. Soil Biol Biochem 37:1564–1568

    Article  Google Scholar 

  • Ben Ouaghrem S (2014) Impact des rejets industriels sur la biodiversité de l’isopodofaune dans la région de Sfax. Université de Tunis El Manar, Mastère

    Google Scholar 

  • Bonaventura J, Bonaventura C (1980) Haemocyanins: relationships in their structure, function and assembly. Amer Zool 20:7–17

    Article  Google Scholar 

  • Cao X, Ma LQ, Chen M, Hardison DW, Harris WG (2003) Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci Total Environ 307:179–189

    Article  Google Scholar 

  • Chandrasekaran A, Ravisankar R, Harikrishnan N, Satapathy KK, Prasad MVR, Kanagasabapathy KV (2015) Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India-Spectroscopical approach, Spectrochim. Acta, Part A J Mol Biomol Spectrosc 137:589–600. https://doi.org/10.1016/j.saa.2014.08.093

    Article  Google Scholar 

  • Charfi-Cheikhrouha F (2003) Genetic diversity in the mitochondrial 16S rDNA among five populations of Armadillidium pelagicum (Isopoda, Oniscidea). In: Sfenthourakis S, Araujo PB, Hornung E, Schmalfuss H, Taiti S, Szlávecz K (eds) The biology of terrestrial isopods, V. Crustaceana monographs. Brill, Leiden, pp 365–380

    Google Scholar 

  • Clarke KR, Warwick RM (1994) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Natural Environment Research Council, Plymouth

    Google Scholar 

  • Cortet J, Vaufleury AG, Balanguer NP, Gomot L, Texier C, Cluzeau D (1999) The use of invertebrate soil fauna in monitoring pollutants effects. Eur J Soil Biol 35:115–34

    Article  Google Scholar 

  • Dallinger R (1993) Strategies of metal detoxification in terrestrial invertebrate. In: Dallinger RAR, Rainbow PS (eds) Ecotoxicology of metals in invertebrates. Lewis, Boca Raton, pp 245–290

    Google Scholar 

  • Dallinger R, Berger B, Birkel S (1992) Terrestrial isopods: Useful biological indicators of urban metal pollution. Oecologia 89:32–41. https://doi.org/10.1007/BF00319012

    Article  Google Scholar 

  • De Matos AT, Fontes MPF, Da Costa LM, Martinez MA (2001) Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environ Pollut 111:420–435

    Article  Google Scholar 

  • Dong JH, Yu M, Bian ZF, Wang Y, Di C (2011) Geostatistical analyses of heavy metal distribution in reclaimed mine land in Xuzhou, China. Environ Earth Sci 62:127–37

    Article  Google Scholar 

  • Eijsackers H (1987) The impact of heavy metals on terrestrial ecosystems: biological adaptation through behavioural and physiological avoidance. In: Ravera O (ed) Ecological assessment of environmental degradation, pollution and recovery. Elsevier Science Publishers B.V, Amsterdam, pp 245–259

    Google Scholar 

  • El Zrelli R, Courjault-Radé P, Rabaoui L, Castet S, Michel S, Bejaoui N (2015) Heavy metal contamination and ecological risk assessment in the surface sediments of the coastal area surrounding the industrial complex of Gabes City, Gulf of Gabes, SE Tunisia. Mar Pollut Bull 101:922–929. https://doi.org/10.1016/j.marpolbul.2015.10.047

    Article  Google Scholar 

  • El Zrelli R, Courjault-Radé P, Rabaoui L, Daghbouj N, Mansour L, Balti R, Castet S, Attia F, Michel S, Bejaoui N (2017) Biomonitoring of coastal pollution in the Gulf of Gabes (SE, Tunisia): use of Posidonia oceanica seagrass as a bioindicator and its mat as an archive of coastal metallic contamination. Environ Sci Pollut Res 24:22214–22225

    Article  Google Scholar 

  • Ferreira NGC, Cardoso DN, Morgado R, Soares AMVM, Loureiro S (2015) Long-term exposure of the isopod Porcellionides pruinosus to nickel: costs in the energy budget and detoxification enzymes. Chemosphere 135:354–362

    Article  Google Scholar 

  • Gàl J, Markiewicz PJ, Hursthouse A, Tatner P (2008) Metal uptake by woodlice in urban soils. Ecotox Environ Safe 69:139–149

    Article  Google Scholar 

  • Gasmi M (2006) La répartition des établissements industriels a` Sfax: un schéma radio-concentrique. Les partis politiques dans les pays arabes, Tome 2, le Maghreb, pp 245–278. http://remmm.revues.org/2879

  • Ghannem S, Khazri A, Sellami B, Boumaiza M (2016) Assessment of heavy metal contamination in soil and Chlaenius (Chlaeniellus) olivieri (Coleoptera, Carabidae) in the vicinity of a textile factory near Ras Jbel (Bizerte, Tunisia). Environ Earth Sci 75:442

    Article  Google Scholar 

  • Ghannem S, Touaylia S, Bejaoui M (2018) Assessment of trace metals contamination in soil, leaf litter and leaf beetles (Coleoptera, Chrysomelidae) in the vicinity of a metallurgical factory near Menzel Bourguiba (Tunisia). Hum Ecol Risk Assess. https://doi.org/10.1080/10807039.2017.1405338

    Article  Google Scholar 

  • Ghemari C, Waterlot C, Leclercq J, Douay F, Nasri-Ammar K (2014) Metal bioaccumulation in Porcellio laevis and Porcellionides pruinosus from Tunisian contaminated sites. In: Proceeding of the 9th ISTIB (International Symposium in Terrestrial Isopods Biology, Poitiers, 26–30 June)

  • Ghemari C, Waterlot C, Ayari A, Leclercq J, Douay F, Nasri-Ammar K (2017) Assessment of heavy metals in soil and terrestrial isopod Porcellio laevis in Tunisian industrialized areas. Environ Earth Sci 76:6–23

    Article  Google Scholar 

  • Harmsen J (2007) Measuring bioavailability: from a scientific approach to standard methods. J Environ Qual 36:1420–1428. https://doi.org/10.2134/jeq2006.0492

    Article  Google Scholar 

  • Heikens A, Peijnenburg WJGM, Hendriks AJ (2001) Bioaccumulation of heavy metals in terrestrial invertebrates. Environ Pollut 113:385–393

    Article  Google Scholar 

  • Henin S (1983) Les éléments traces dans le sol. Science du Sol 2:67–71

    Google Scholar 

  • Hobbelen PHF, Koolhaas JE, van Gestel CAM (2006) Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils. Environ Pollut 144:639–646

    Article  Google Scholar 

  • Hoese B (1981) Morphologie und Funktion des Wasserleitungs systems der terrestrischen Isopoden [Crustacea, Isopoda, Oniscoidea]. Zoomorphology 98:135–167

    Article  Google Scholar 

  • Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, Barking

    Google Scholar 

  • Hopkin S, Martin MH (1982a) The distribution of zinc, cadmium, lead and cooper within the woodlouse Oniscus asellus (Crustacea, Isopoda). Oecologia 54:227–232

    Article  Google Scholar 

  • Hopkin S, Martin MH (1982b) The distribution of zinc, cadmium, lead and cooper within the hepatopancreas of woodlouse. Tissue Cell 17:703–715

    Article  Google Scholar 

  • Hopkin SP, Martin MH (1984) Heavy metals in woodlice. Symp Zool Soc Lond 53:143–166

    Google Scholar 

  • Hopkin SP, Martin MH (1985) Assimilation of zinc, cadmium, lead, copper, and iron by the spider Dysdera crocata, a predator of woodlice. Bull Environ Contam Toxicol 34:183–187

    Article  Google Scholar 

  • Hopkin SP, Hardisty GN, Martin MH (1986) The woodlouse Porcellio scaber as a ‘biological indicator’ of zinc, cadmium, lead and copper pollution. Environ Pollut B 11:271–290. https://doi.org/10.1016/0143-148X(86)90045-5

    Article  Google Scholar 

  • Hussein MA, Obuid-Allah AH, Mohammad AH, Scott-Fordsmand JJ, Abd El-Wakeil KF (2006) Seasonal variation in heavy metal accumulation in subtropical population of the terrestrial isopod, Porcellio laevis. Ecotoxicol Environ Saf 63:168–174

    Article  Google Scholar 

  • Janssen RPT, Peijnenburg WJGM, Posthuma L, Van Den Hoop AGT (1997) Equilibrium partitioning of heavy metals in Dutch field soils. I. Relationship between metal partition coefficients and soil characteristics. Environ Toxicol Chem 16:2470–2478

    Article  Google Scholar 

  • Khemaissia H, Jelassi R, Touihri M, Souty-Grosset C, Nasri-Ammar K (2016) Diversity of terrestrial isopods in the Northern Tunisian Wetlands. Afr J Ecol 55(2):176–187

    Article  Google Scholar 

  • Kontas A (2007) Trace metals (Cu, Mn, Ni, Zn, Fe) contamination in marine sediment and zooplankton samples from Izmir Bay (Aegean Sea, Turkey). Water Air Soil Pollut 188:323–333. https://doi.org/10.1007/s11270-007-9547-1

    Article  Google Scholar 

  • Krásný J, Sharp JM (2007) Groundwater in fractured rocks: IAH selected paper series, vol 9, ISBN 9780415414425

  • Khlifi R, Olmedo P, Fernando G, Feki-Tounsi M, Hammami B, Rebai A, Hamza-Chaffai A (2014) Biomonitoring of cadmium, chromium, nickel and arsenic in general population living near mining and active industrial areas in Southern Tunisia. Environ Monit Assess 186:761–779

    Article  Google Scholar 

  • Laskowski R (1991) Are the top carnivores endangered by heavy metal biomagnification? Oikos 60:387–390

    Article  Google Scholar 

  • Liao D, Zheng W, Li X, Yang Q, Yue X, Guo L, Zeng G (2010) Removal of lead (II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste. J Hazard Mater 177:126–130

    Article  Google Scholar 

  • Loureiro S, Amorim MJB, Campos B, Rodrigues SMG, Soares AMVM (2009) Assessing joint toxicity of chemicals in Enchytraeus albidus (Enchytraeidae) and Porcellionides pruinosus (Isopoda) using avoidance behaviour as an endpoint. Environ Pollut 157:625–636. https://doi.org/10.1016/j.envpol.2008.08.010

    Article  Google Scholar 

  • Loureiro S, Sampaio A, Brandão A, Nogueira AJ, Soares AM (2006) Feeding behaviour of the terrestrial isopod Porcellionides pruinosus Brandt, 1833 (Crustacea, Isopoda) in response to changes in food quality and contamination. Sci Total Environ 369:119–128

    Article  Google Scholar 

  • Maerz JC, Karuzas JM, Madison DM, Blossey B (2005) Introduced invertebrates are important prey for a generalist predator. Divers Distrib 11:83–90

    Article  Google Scholar 

  • Mazzei V, Longo G, Brundo MV, Copat C, Oliveri Conti G, Ferrante M (2014) Bioaccumulation of cadmium and lead and its effects on hepatopancreas morphology in three terrestrial isopod Crustacean species. Ecotoxicol Environ Saf 110:269–279

    Article  Google Scholar 

  • Nahmani J, Lavelle P (2002) Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. Eur J Soil Biol 38:297–300

    Article  Google Scholar 

  • Nahmani J, Hodson ME, Black S (2007) A review of studies performed to assess metal uptake by earthworms. Environ Pollut 145:402–424

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. American Soc. of Agronomy, Wisconsin, pp 539–579

    Google Scholar 

  • Nico MVS, Ruslan OB, Andrei DP, Andrei SZ, Verhoef SC (2001) Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia). Pedobiologia 45:451–466

    Article  Google Scholar 

  • Ouni A (2015) Impacts des métaux lourds sur les réponses physiologiques et comportementales de deux Oniscoïdes: Armadillo officinalis et Porcellionides pruinosus. Université de Tunis El Manar, Mastère

    Google Scholar 

  • Peijnenburg WJGM, Posthuma L, Eijsackers HJP, Allen HE (1997) A conceptual framework for implementation of bioavailability of metals for environmental management purposes. Ecotoxicol Environ Saf 37:163–172

    Article  Google Scholar 

  • Petra DBF, David JS, Gabriele B, Claus S, Peter KH, Nisha P, Hege ES, Jason MW (2004) Metal effects on soil invertebrate feeding: measurements using the bait lamina method. Ecotoxicology 13:807–816

    Article  Google Scholar 

  • Rabaoui L, Balti R, El Zrelli R, Tlig-Zouari S (2014) Assessment of heavy metal pollution in the gulf of Gabes (Tunisia) using four mollusc species. Mediterr Mar Sci 15(1):45–58

    Article  Google Scholar 

  • Raczuk J, Pokora A (2008) Influence of traffic pollution on heavy metal contentin soil and earthworms (Lumbricidae). Ecol Chem Engineer A 15:265–274

    Google Scholar 

  • Reinecke AJ, Reinecke SA, Musibono DE, Chapman A (2000) The transfer of lead (Pb) from earthworms to shrews (Myosorex varius). Arch Environ Contam Toxicol 39:392–397

    Article  Google Scholar 

  • Richard AF, Dennis JT (2011) Copper: an essential metal in biology. Curr Biol 21:877–883

    Article  Google Scholar 

  • Sallaku F, Fortuzi S, Tota O, Huji B, Chachalis D D, Darawsheh M (2009) Heavy metal soil contamination around the metallurgical plant of Elbasani in Albania. J Food Agric Environ 7(3–4):878–881

    Google Scholar 

  • Sandifer RD (1996) The effects of cadmium, copper, lead and zinc contamination on arthropod communities in the vicinity of a primary smelting works. PhD thesis, University of Reading

  • Sipos P, Németh T, Mohai I (2005) Distribution and possible immobilization of lead in a forest soil (Luvisol) profile. Environ Geochem Health 27:1–10

    Article  Google Scholar 

  • Smit CE, Van Gestel CAM (1998) Effects of soil type, prepercolation, and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida. Environ Toxicol Chem 17:1132–1141

    Article  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1996) Risk assessment of the threat of secondary poisoning by metals to predators of earthworms in the vicinity of a primary smelting works. Sci Total Environ 187:167–183

    Article  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1999) Seasonal variation in the abundance, biomass and biodiversity of earthworms in soils contaminated with metal emissions from a primary smelting works. J Appl Ecol 36:173–183

    Article  Google Scholar 

  • Stonard MD, Webb M (1976) Influence of dietary cadmium on the distribution of the essential metals copper, zinc and iron in tissues of the rat. Chem Biol Interact 15:349–366

    Article  Google Scholar 

  • Ter Meulen-Smidt GRB (1995) Regional differences in potentials for delayed mobilization of chemicals in Europe. In: Salomons W, Stigliani WN (eds) Biogeodynamics of pollutants in soils and sediments. Springer, Berlin, pp 135–169

    Chapter  Google Scholar 

  • Thakali S, Allen HE, Di-Toro DM, Ponizovsky AA, Rooney CP, Zhao FJ (2006) Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil. Environ Sci Technol 40:7094–7100. https://doi.org/10.1021/es061173c

    Article  Google Scholar 

  • Tourinho PS, Van Gestel CAM, Jurkschat K, Soares AMVM, Loureiro S (2015) Effects of soil and dietary exposures to Ag nanoparticles and AgNO3 in the terrestrial isopod Porcellionides pruinosus. Environ Pollut 205:170–177

    Article  Google Scholar 

  • Tranvik L, Eijsackers H (1989) On the advantage of Folsomia fimetarioides over Isotomiella minor (Collembola) in a metal polluted soil. Oecologia 80:195–200

    Article  Google Scholar 

  • Van Gestel CAM, Rademaker MCJ, Van Straalen NM (1995) Capacity controlling parameters and their impact on metal toxicity in soil invertebrates. In: Salomons W, Stigliani WM (eds) Biogeodynamics of pollutants in soils and sediments. Springer, Berlin, pp 1–192

    Google Scholar 

  • Vijver MG, van Gestel CA, Lanno RP, van Straalen NM, Peijnenburg JGM (2004) Internal metal sequestration and its ecotoxicological relevance, a review. Environ Sci Technol 38:4705–4712. https://doi.org/10.1021/es040354g

    Article  Google Scholar 

  • Waterlot C, Bidar G, Peldrêne A, Roussel H, Fourrier H, Douay F (2013) Contamination, fractionation and availability of metals in urban soils in the vicinity of former lead and zinc smelters, France. Pedosphere 23:143–159

    Article  Google Scholar 

  • Witzel B (2000) The influence of zinc on the uptake and loss of cadmium and lead in the woodlouse, Porcellio scaber (Isopoda, Oniscidea). Ecotoxicol Environ Saf 47:43–53

    Article  Google Scholar 

  • Wolters V (2001) Biodiversity of animals its function. Eur J Soil Biol 37:221–227. https://doi.org/10.1016/S1164-5563(01)01088-3

    Article  Google Scholar 

  • Zaghden H, Kallel M, Louati A, Elleuch B, Oudot J, Saliot A (2005) Hydrocarbons in surface sediments from the Sfax coastal zone (Tunisia), Mediterranean Sea. Mar Pollut Bullet 50(11):1287–1294

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Research Laboratory of Biodiversity, Management and Conservation of Biological systems, University of Tunis El Manar, Faculty of Science of Tunis. We gratefully acknowledge the support of all members of the LGCgE (Yncréa Lille) regarding their considerable assistance in chemical analyses. The authors are grateful to Mrs. Abdelkefi Najoua (Translator/Interpreter) for proofreading the English of the manuscript and Mrs. Chebaane Sahar (Ph.D.) for designing the map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ouni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouni, A., Ghemari, C., Ben Said, A. et al. Monitoring of heavy metal contamination in soils and terrestrial isopods sampled from the industrialized areas of Sfax (southeastern Tunisia). Environ Earth Sci 78, 440 (2019). https://doi.org/10.1007/s12665-019-8432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8432-8

Keywords

Navigation