Skip to main content
Log in

Effectiveness of geophysical surveys for water wells relocation in overexploited aquifers (the example of Maggiore and Traversola Valleys, Northwestern Italy)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Aquifer overexploitation is a common problem in drinking water management. This will become more and more important given the general reduction of water resources. To overcome overexploitation, one of the most adopted solutions is the relocation of extraction wells. To establish the positions of new wells, a precise knowledge of the hydrogeological setting is required. Specific surveys are therefore necessary to obtain information over wide investigation zones. Geophysical methods, particularly electromagnetic and electrical, can be useful with this aim. In the present paper a case history on the combined use of Electric Resistivity Tomography and Time Domain Electromagnetic soundings is reported. Surveys have been performed within the Maggiore and Traversola Valleys, to investigate the uppermost part of the Quaternary deposits, hosting the near surface aquifer. The electromagnetic data have been inverted with a spatially constrained approach by assuming a quasi 1D model of the subsurface. Geophysical surveys allowed for depicting the depth and lateral continuity of the supposed aquifer level in the surveyed area up to a depth of about 200 m and proposing potential positions for well relocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdul Nassir SS, Loke MH, Lee CH, Nawawi MNM (2000) Saltwater intrusion mapping by geoelectrical imaging surveys. Geophys Prospect 48:647–661

    Article  Google Scholar 

  • Ajassa R, Bove A, Castellaro M, Caviglia C, De Luca DA, Destefanis E, Forno MG, Gregorio L, Lasagna M, Masciocco L (2011) Convenzione tra il Dipartimento di Scienze della Terra dell’Università degli Studi di Torino e l’Autorità d’Ambito n°5 Astigiano Monferrato “Aggiornamento ed approfondimento dello studio delle falde idriche sotterranee di Valle Maggiore (di Cantarana) e di Valle Traversola (San Paolo Solbrito) per la razionalizzazione dei prelievi idropotabili e per la definizione delle aree di salvaguardia”. Unpublished report

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54–62

    Article  Google Scholar 

  • ATO5 (2015). Valutazione ambientale strategica. Rapporto ambientale. http://www.regione.piemonte.it/ambiente/valutazioni_ambientali/dwd/vas/pianoAmbito5/1_RapportoAmbientale.pdf. Accessed 03 Oct 2017

  • Auken E, Christiansen AV (2004) Layered and laterally constrained 2D inversion of resistivity data. Geophysics 69:752–761

    Article  Google Scholar 

  • Batte A, Muwanga A, Sigrist PW, Owor M (2008) VES as an exploration technique to improve on the certainty of groundwater yield in the fractured crystalline basement of eastern Uganda. Hydrogeol J 16(8):1683–1693

    Article  Google Scholar 

  • Beretta GP, De Luca DA, Masciocco L, Novo M (1999) Conoscenza e protezione dell’acquifero plio-pleistocenico di interesse strategico dell’Astigiano occidentale e tutela del campo acquifero della valle Maggiore di Cantarana. Atti del 3_ convegno nazionale sulla protezione e gestione delle acque sotterranee per il millennio. Quaderni di geologia applicata, Pitagora Ed. Bologna

  • Boano P, Forno MG (1996) Carta geologica dell’area-tipo della successione villafranchiana. Litografia GEDA—Torino

  • Bortolami GC, Braga G, Colombetti A, Dal Pra` A, Francani V, Francavilla F, Giuliano G, Manfredini M, Pellegrini M, Petrucci F, Pozzi R, Stefanini S (1978) Hydrogeological features of the Po Valley (Northern Italy). In: Proceedings of the IAHS conference on hydrogeology of great sedimentary basins, Budapest, pp 304–321

  • Bove A, Casaccio D, Destefanis E, De Luca DA, Lasagna M, Masciocco L, Ossella L, Tonussi M (2005) Idrogeologia della pianura piemontese. Regione Piemonte Direzione Pianificazione delle Risorse Idriche, Mariogros Industrie Grafiche S.p.A., Torino, pp 17 (with CD-Rom)

  • Carothers JE (1968) A statistical study of the formation factor relation. Log Anal 9:13–20

    Google Scholar 

  • Carraro F (1996) Revisione del Villafranchiano nell’area-tipo di Villafranca d’Asti (The Villafranchian in the Villafranca d’Asti type-area: a revision). Il Quaternario It Journ Quatern Sc 9(1):5–120

    Google Scholar 

  • Cimino A, Cosentino C, Oieni A, Tranchina L (2007) A geophysical and geochemical approach for seawater intrusion assessment in the Acquedolci coastal aquifer (Northern Sicily). Environ Geol 55:1473–1482

    Article  Google Scholar 

  • Comina C, Socco LV, Manzella A (2012) Pseudo-3D characterization of a geothermal field through magneto telluric. In: Near surface geoscience 2012

  • Dahlin T (1996) 2D resistivity surveying for environmental and engineering applications. First Break 14:275–283

    Article  Google Scholar 

  • De Luca DA, Dell’Orto V, Forno MG, Gregorio L, Lasagna M, Masciocco L (2009). Assetto idrogeologico della Pianura Piemontese in un’area caratterizzata dalla presenza di un sito nucleare e di un importante campo acquifero (Hydrogeological structure in Piedmont Plain in an area characterized by the presence of a nuclear site and an important aquifer field). Rend. Online Soc. Geol. It, pp. 201–202

  • De Luca DA, Destefanis E, Forno MG, Lasagna M, Masciocco L (2014) The genesis and the hydrogeological features of the Turin Po Plain fontanili, typical lowland springs in Northern Italy. Bull Eng Geol Environ 73:409–427. https://doi.org/10.1007/s10064-013-0527-y

    Google Scholar 

  • Debernardi L, De Luca DA, Lasagna M (2008) Correlation between nitrate concentration in groundwater and parameter affecting aquifer intrinsic vulnerability. Environ Geol 55:539–558. https://doi.org/10.1007/s00254-007-1006-1

    Article  Google Scholar 

  • Demanet D, Renardy F, Vanneste K, Jongmans D, Camelbeeck T, Megrahoui M (2001) The use of geophysical prospecting for imaging active faults in the Roer Graben, Belgium. Geophysics 66:78–89

    Article  Google Scholar 

  • Ezersky M, Legchenko A, Al-Zoubi A, Levi E, Akkawi E, Chalikakis K (2011) Tem study of the geoelectrical structure and groundwater salinity of the nahal hever sinkhole site, dead sea shore. Israel J Appl Geophys 75(1):99–112

    Article  Google Scholar 

  • Ingeman-Nielsen T, Baumgartner F (2006) CR1Dmod: a Matlab program to model 1D complex resistivity effects in electrical and electromagnetic survey. Comput Geosci 32:1411–1419

    Article  Google Scholar 

  • Kafri U, Goldman M (2005) The use of the time domain electromagnetic method to delineate saline groundwater in granular and carbonate aquifers and to evaluate their porosity. J Appl Geophys 57:167–178

    Article  Google Scholar 

  • Lasagna M, Caviglia C, De Luca DA (2014) Simulation modeling for groundwater safety in an overexploitation situation: the Maggiore Valley context (Piedmont, Italy). Bull Eng Geol Environ 2014(73):341–355. https://doi.org/10.1007/s10064-013-0500-9

    Google Scholar 

  • Lasagna M, De Luca DA, Franchino E (2016) Nitrate contamination of groundwater in the western Po Plain (Italy): the effects of groundwater and surface water interactions. Environ Earth Sci 75:240. https://doi.org/10.1007/s12665-015-5039-6

    Article  Google Scholar 

  • McNeill JD (1990) Use of electromagnetic methods for groundwater studies. In: Ward SH (ed) Geotechnical and environmental geophysics, vol 1. SEG, Tulsa, pp 191–218

    Google Scholar 

  • Nicaise Y, Descloitres M, Alassane A, Mama D, Boukari M (2012) Environmental geophysical study of the groundwater mineralization in a plot of the cotonou Littoral zone (South Benin). Int J Geophys 2012. Article ID 329827

  • Parsekian A, Grombacher D, Davis A, Flinchum B, Munday T, Cahill K (2017) Near-surface geophysics for informed water-management decisions in the Anangu Pitjantjatjara Yankunytjatjara (APY) lands of South Australia. Lead Edge 33(12):1342–1347

    Article  Google Scholar 

  • Porter CR, Carothers JE (1970) Formation factor-porosity relation derived from well log data. Society of professional well log analysts, transactions, 11th annual logging symposium, Los Angeles, 3−6 May, pp A1−A19

  • Reynolds JM (2011) An introduction to applied and environmental geophysics, 2nd edn. Wiley Blackwell, Hoboken

    Google Scholar 

  • Sacco F (1924) Geoidrologia dei pozzi profondi della Valle Padana. Min. LL. PP., Serv. Idr., Uff. Idr. Po, pp 180

  • Seaton WJ, Burbery TJ (2000) Aquifer characterization in the Blue Ridge physiographic province using resistivity profiling and borehole geophysics: geologic analysis. J Environ Eng Geophys 5:45–58

    Article  Google Scholar 

  • Sirhan A, Hamidi MO (2012) Characterization by electrical and electromagnetic geophysical methods of the shallow hydrogeological system at Hebron (West Bank, Palestine) in a semi-arid zone. Comptes Rendus Geosci 344(9):449–460

    Article  Google Scholar 

  • Socco LV, Boiero D, Foti S, Wisén R (2010) Laterally constrained inversion of ground roll from seismic reflection records. Geophysics 74(6):G35–G45

    Article  Google Scholar 

  • Soupios P, Kouli M, Vallianatos F, Vafidis A, Stavroulakis G (2010) Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Keritis basin in Chania (Crete–Greece). J Hydrol (Amst) 338:122–131. https://doi.org/10.1016/j.jhydrol.2007.02.028

    Article  Google Scholar 

  • Tixier MP, Morris RL, Connell JG (1968) Log evaluation of low-resistivity pay sands in the Gulf Coast. Log Anal 9(6):3–20

    Google Scholar 

  • Viezzoli A, Christiansen AV, Auken E, Sorensen K (2008) Quasi-3D modelling of airborne TEM data by spatially constrained inversion. Geophysics 73:F105–F113. https://doi.org/10.1190/1.2895521

    Article  Google Scholar 

  • Vigna B, Fiorucci A, Ghielmi M (2010) Relations between stratigraphy, groundwater flow and hydrogeochemistry in Poirino Plateau and Roero areas of the Tertiary Piedmont Basin, Italy. Mem Descr Carta Geol d’It XC:267–292

    Google Scholar 

  • Winsauer WO, Shearing HM, Masson PH, Williams M (1952) Resistivity of brine saturated sands in relation to pore geometry. AAPG Bull 36:253–277

    Google Scholar 

  • Young M, Macumber P, Watts D, Toqy N (2004) Electromagnetic detection of deep freshwater lenses in a hyper-arid limestone terrain. J Appl Geophys 57:43–61

    Article  Google Scholar 

Download references

Acknowledgements

Authors are indebted with the management authorities (ATO 5–Ambito Territoriale Ottimale n.5 Astigiano Monferrato) for funding the surveys object of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Comina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Luca, D.A., Comina, C., Lasagna, M. et al. Effectiveness of geophysical surveys for water wells relocation in overexploited aquifers (the example of Maggiore and Traversola Valleys, Northwestern Italy). Environ Earth Sci 77, 19 (2018). https://doi.org/10.1007/s12665-017-7218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-7218-0

Keywords

Navigation