Skip to main content
Log in

Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In the present study, recovery of lithium as lithium aluminate from Urmia Lake was investigated. A coprecipitation method was utilized by using an aluminum salt \( \left( {{\text{AlCl}}_{3} .6{\text{H}}_{2} {\text{O}}} \right) \). Lithium ions are adsorbed on aluminum hydroxide, which is prepared by adding NaOH and \( {\text{AlCl}}_{3} .6{\text{H}}_{2} {\text{O}} \) to the brines at \( {\raise0.7ex\hbox{${{\text{Al}}^{3 + } }$} \!\mathord{\left/ {\vphantom {{{\text{Al}}^{3 + } } {{\text{Li}}^{ + } }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${{\text{Li}}^{ + } }$}} \)molar ratio ≈5. The results showed that the maximum \( {\text{Li}}^{ + } \) ion adsorption was adsorbed at pH ~ 7. Also, by increasing the temperature from 30 °C to 40 °C, lithium ions adsorption was decreased. The maximum adsorption amount of \( {\text{Al}}\left( {\text{OH}} \right)3 \) was at 30 °C, pH = 7 and density 1.31. The obtained results from adsorption of \( {\text{Li}}^{ + } \) of Urmia Lake were compared with four isotherm models, Langmuir, Dubinin–Radushkevich, Freundlich and Temkin isotherms. In addition, sulfuric acid was used for \( {\text{Li}}^{ + } \) desorption from aluminum hydroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Averill WA, Olson DL (1978) A Review of extractive processes for lithium from Ores and brines. Energy 3(3):305–313. doi:10.1016/0360-5442(78)90027

    Article  Google Scholar 

  • Büchel KH, Moretto HH, Woditsch P (2000) Industrial inorganic chemistry, second completely revised edition. Edition Wiley-VCH. Translated by David R, Terrell

    Book  Google Scholar 

  • Dada AO, Olalekan AP, Olatunya AM, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice huck. IOSR-JAC. doi:10.9790/5736-0313845

    Google Scholar 

  • Duong DD (1998) Adsorption analysis: equilibria and kinetics. World Scientific Publishing Company, Queensland, p 913

    Google Scholar 

  • Dursun T, Soutis C (2014) Recent developments in advanced aircraft aluminum alloys. Mater Des 56:862–871

    Article  Google Scholar 

  • Epstein JA, Feist EM, Zmora J, Marcus Y (1981) Extraction of lithium from the Dead Sea. Hydrometallurgy 6:269–275. doi:10.1016/0304-386X(81)90044-X

    Article  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J. doi:10.1016/j.cej.2009.09.013

    Google Scholar 

  • Guo GC, Wang D, Wei XL, Zhang Q, Liu H, Lau WM, Liu LM (2015) First-principles study of phosphorene and graphene heterostructure as anodematerials for rechargeable Li batteries. J Phys Chem Lett 6:5002–5008

    Article  Google Scholar 

  • Hamdaoui O, Naffrechoux E (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater. doi:10.1016/j.jhazmat.2007.01.021

    Google Scholar 

  • Havash S Abd, Elkader E, El Diwani G (2010) Methodology for selective adsorption of Lithium ions onto polymeric Aluminum (III) hydroxide. J Am Sci 6(11):301–308. doi:10.7537/marsjas061110.36

    Google Scholar 

  • Igwe JC, Abia AA (2007) Adsorption isotherm studies of Cd (II), Pb(II) and Zn (II) ions biomediation from aqueous solution using unmodified and EDTA- modified maize cob. Eclet Quim 32(1):33–42. doi:10.1590/S0100-46702007000100005

    Article  Google Scholar 

  • Isupov VP, Kotsupalo NP, Nemudry AP, Menzeres LT (1995) Aluminum hydroxide as selective sorbent of lithium salts from brines and technical solutions. Stud Surf Sci Catal 120:621–652. doi:10.1016/S0167-2991(99)80567-9

    Article  Google Scholar 

  • Lemaire J, Svecova L, Lagallarde F, Laucournet R, Thivel P-X (2013) Lithium recovery from aqueous solution by sorption/desorption. Hydrometallurgy 143:1–11. doi:10.1016/j.hydromet.2013.11.006

    Article  Google Scholar 

  • Lowell, S., Shields, J.E. (1991). Power Surface area and Porosity. 3th edition. Springer-Science + Business Media, B.V. Netherlands

  • Meshram P, Pandey BD, Mankhand TR (2014) Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy. 150:192–208. doi:10.1016/j.hydromet.2014.10.012

    Article  Google Scholar 

  • Nagy B, Mânzatu C, Török A, Indolean C, Măicăneanu A, Tonk S, Majdik C (2015) Isotherm and thermodynamic studies of Cd(II) removal process using chemically modified lignocellulosic adsorbent. Rev Roum Chim 60(2–3):257–264

    Google Scholar 

  • Nemury AP, Isupov VP, Kotsupalo NP, Boldyrev VV (1986) Reaction of crystalline aluminum hydroxide with aqueous solutions of lithium salts. React Solids 1:221–226. doi:10.1016/0168-7336(86)80002-X

    Article  Google Scholar 

  • Othman AA, Zeid Hashem A, Habila MA (2011) Kinetic, equilibrium and thermodynamic studies of cadmium (II) adsorption by modified agricultural wastes. Molecules. doi:10.3390/molecules161210443

    Google Scholar 

  • Pauwels H, Brach M, Fouillac C (1995) Study of Li+ adsorption onto polymeric aluminum(II1) hydroxide for application in the treatment of geothermal waters. Colloid Surface A 100:73–82. doi:10.1016/0927-7757(95)03185-G

    Article  Google Scholar 

  • Seeley FG, Baldwin WH (1976) Extraction of Lithium from Neutral Salt Solutions with Fluorinated β- diketones. J Inorg Nucl Chem 6:269–275. doi:10.1016/0022-1902(76)80027-9

    Google Scholar 

  • Shi C, Jia Y, Zhang C, Liu H, Jing Y (2015) Extraction of lithium from salt lake brine using room temperatureionic liquid in tributyl phosphate. Fusion Eng Des 90:1–6. doi:10.1016/j.fusengdes.2014.09.021

    Article  Google Scholar 

  • Takeuchi T (1980) Extraction of lithium from sea water with metallic aluminum. J Nucl Sci Technol 17(12):922–928. doi:10.1080/18811248.1980.9732675

    Article  Google Scholar 

  • Um N, Hirato T (2014) Precipitation behavior of Ca(OH)2, Mg(OH)2, and Mn(OH)2 from CaCl2, MgCl2 and MnCl2 in NaOH-H2O solutions and study of lithium recovery from seawater via two-stage precipitation process. Hydrometallurgy 146:142–148. doi:10.1016/j.hydromet.2014.04.006

    Article  Google Scholar 

  • Wang L, Meng CG, Han M, Ma W (2008) Lithium uptake in fixed-pH solution by ion sieves. J Colloid Interface Sci 325:31–40

    Article  Google Scholar 

  • Zandevakili S, Ranjbar M, Ehteshamzadeh M (2014) Recovery of lithium from Urmia Lake by a nanostructure MnO2 ion sieve. Hydrometallurgy 149:148–152. doi:10.1016/j.hydromet.2014.08.004

    Article  Google Scholar 

  • Zymon W, Kurbiel J (1986) Application of previously precipitated active aluminum hydroxide (AAH) for removal of refractory substances from wastewater. Studied Environ Sci 29:345–353. doi:10.1016/S0166-1116(08)70951-8

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Urmia University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Heidari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, N., Momeni, P. Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide. Environ Earth Sci 76, 551 (2017). https://doi.org/10.1007/s12665-017-6885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6885-1

Keywords

Navigation