Skip to main content

Advertisement

Log in

Simulations of energy balance components at snow-dominated montane watershed by land surface models

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The quantification of energy interactions among land surface, atmosphere, and surface vegetation is significant to comprehend the hydrological cycle in montane watersheds. Moreover, elevation change is an essential in causing variations in energy fluxes. Thus, estimating the major components of energy interactions is essential for better understanding of the hydrological process. The advanced land surface models (LSMs); the common land model (CLM) and variables infiltration capacity (VIC) are used to estimate accurate hydrometeorological variables. These hydrometeorological variables such as net radiation and sensible, latent, and ground heat fluxes were estimated using CLM and VIC at upper and lower meteorological stations in Sierra Nevada Mountain, California, USA. The estimated fluxes were compared with observations at each site. The estimated daily and monthly net radiation and sensible heat flux from both models showed good agreement with the observations (R ≥ 0.84). The CLM-modeled estimates showed lower trends during the rainfall periods, which occurred mainly during winter at both sites. In comparison, the estimated daily and monthly latent heat flux from CLM at both sites showed better results with lower RMSE and bias than that from VIC, which underestimated latent heat flux. Both models overestimated ground heat flux, and the variation trend was similar to observation. For sensitivity analysis, according to elevation change, all the estimated energy fluxes had slightly different values at the upper and lower met stations. In future studies, parameterization for the LSMs will be conducted for more robust estimations of hydrometeorological variables in montane watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abramowitz G, Leuning R, Clark M, Pitman A (2008) Evaluating the performance of land surface models. J Clim 21:5468–5481

    Article  Google Scholar 

  • Bales RC, Molotch NP, Painter TH, Dettinger MD, Rice R, Dozier J (2006) Mountain hydrology of the western United States. Water Resour Res 42(8):W08432

    Article  Google Scholar 

  • Bales RC, Hopmans JW, O’Geen AT, Meadows M, Hartsough PC, Kirchner P, Hunsaker CT, Beaudette D (2011) Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest. Vadose Zone J 10(3):786–799

    Article  Google Scholar 

  • Bastidas AL, Gupta HV, Hsu K-L, Sorooshian S (2003) Parameter, structure, and model performance evaluation for land surface schemes. Calibration of watershed models. In: Duan Q, Almonte JN (eds) Water science and applications series, vol 6. Amer. Geophys. Union, Washington, pp 229–237

    Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Bonan GB (1996) Sensitivity of a GCM simulation to subgrid infiltration and surface runoff. Clim Dynam 12(4):279–285

    Article  Google Scholar 

  • Bonan GB, Oleson KW, Vertenstein M, Levis S, Zeng X, Dai Y, Dickinson RE, Yang ZL (2002) The land surface climatology of the community land model coupled to the NCAR community climate model. J Clim 15:3123–3149

    Article  Google Scholar 

  • Brooks RH, Corey AT (1966) Properties of porous media affecting fluid flow. J Irrig Drain Div 92(2):61–90

    Google Scholar 

  • Caissie D (2006) The thermal regime of rivers: a review. Freshw Biol 51(8):1389–1406

    Article  Google Scholar 

  • Carlson DW, Groot A (1997) Microclimate of clear-cut, forest interior, and small openings in trembling aspen forest. Agric For Meteorol 87(4):313–329

    Article  Google Scholar 

  • Chen X, Su Z, Ma Y, Yang K, Wang B (2013) Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau. Hydrol Earth Syst Sci 17(4):1607–1618

    Article  Google Scholar 

  • Cherkauer KA, Lettenmaier DP (1999) Hydrologic effects of frozen soils in the upper Mississippi River basin. J Geophys Res Atmos 104(D16):19599–19610

    Article  Google Scholar 

  • Cherkauer KA, Bowling LC, Lettenmaier DP (2003) Variable infiltration capacity cold land process model updates. Glob Planet Change 38(1):151–159

    Article  Google Scholar 

  • Choi M, Lee SO, Kwon H (2010) Understanding of the common land model performance for water and energy fluxes in a farmland during the growing season in Korea. Hydrol Process 24:1063–1071

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. PM Cambridge University Press, Cambridge, pp 1137–1216

    Google Scholar 

  • Clapp RB, Hornberger GM (1978) Empirical equations for some soil hydraulic properties. Water Resour Res 14(4):601–604

    Article  Google Scholar 

  • Colbeck SC (1979) Water flow through heterogeneous snow. Cold Reg Sci Technol 1(1):37–45

    Article  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54(2–4):107–136

    Article  Google Scholar 

  • Dai YJ, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G, Oleson KW, Schlosser CA, Yang Z-L (2003) The common land model. Bull Am Meteorol Soc 84:1013–1023

    Article  Google Scholar 

  • Dengzhong Z, Wanchang Z (2005) Rainfall-runoff simulation using the VIC-3L model over the Heihe River mountainous basin, China. In: Proceedings. 2005 IEEE international geoscience and remote sensing symposium, 2005. IGARSS’05, vol 6, pp 4391–4394

  • Dickinson RE, Henderson-Sellers A (1988) Modelling tropical deforestation: a study of GCM land-surface parametrizations. Q J R Meteorol Soc 114(480):439–462

    Article  Google Scholar 

  • Dingman SL (2002) Water in soils: infiltration and redistribution. Phys Hydrol, second edition, Upper Saddle River, New Jersey, Prentice-Hall, Inc

  • Dozier J (2011) Mountain hydrology, snow color, and the fourth paradigm. EOS Trans AGU 2011(92):373–374. doi:10.1029/2011EO430001

    Article  Google Scholar 

  • Ellis CR, Pomeroy JW, Link TE (2013) Modeling increases in snowmelt yield and desynchronization resulting from forest gap-thinning treatments in a northern mountain headwater basin. Water Resour Res 49(2):936–949

    Article  Google Scholar 

  • Erickson TA, Williams MW, Winstral A (2005) Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resour Res 41(4):W04014

    Article  Google Scholar 

  • Farouki OT (1981) The thermal properties of soils in cold regions. Cold Reg Sci Technol 5(1):67–75

    Article  Google Scholar 

  • Flerchinger GN, Cooley KR, Deng Y (1994) Impacts of spatially and temporally varying snowmelt on subsurface flow in a mountainous watershed: 1. Snowmelt simulation. Hydrol Sci J 39(5):507–520

    Article  Google Scholar 

  • Francini M, Pacciani M (1991) Comparative analysis of several conceptual rainfall-runoff models. J Hydrol 122:161–219

    Article  Google Scholar 

  • Gao Z, Lenschow DH, He Z, Zhou M (2009) Seasonal and diurnal variations in moisture, heat and CO2 fluxes over typical steppe prairie in Inner Mongolia, China. Hydrol Earth Syst Sci 13:987–998

    Article  Google Scholar 

  • Garvelmann J, Pohl S, Weiler M (2014) Variability of observed energy fluxes during rain-on-snow and clear sky snowmelt in a midlatitude mountain environment. J Hydrometeorol 15(3):1220–1237

    Article  Google Scholar 

  • Geddes CA, Brown DG, Fagre DB (2005) Topography and vegetation as predictors of snow water equivalent across the alpine treeline ecotone at Lee Ridge, Glacier National Park, Montana, USA. Arct Antarc Alp Res 37(2):197–205

    Article  Google Scholar 

  • Giger DR, Schmitt GJ (1993) Soil survey of Sierra National Forest. USDA-SCS, U.S. Gov. Print. Off, Washington, DC

  • Greuell W, Smeets P (2001) Variations with elevation in the surface energy balance on the Pasterze (Austria). J Geophys Res 106(D23):31717–31727

    Article  Google Scholar 

  • Grossi G, Falappi L (2003) Comparison of energy fluxes at the land surface–atmosphere interface in an Alpine valley as simulated with different models. Hydrol Earth Syst Sci Discuss 7(6):920–936

    Article  Google Scholar 

  • Gupta HV, Bastidas LA, Sorooshian S, Shuttleworth WJ, Yang ZL (1999) Parameter estimation of a land surface scheme using multicriteria methods. J Geophys Res Atmos 104(D16):19491–19503

    Article  Google Scholar 

  • Henderson-Sellers A (1996) Soil moisture simulation: achievements of the RICE and PILPS intercomparison workshop and future directions. Glob Planet Change 13(1):99–115

    Article  Google Scholar 

  • Hiemstra CA, Liston GE, Reiners WA (2006) Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecol Model 197(1):35–51

    Article  Google Scholar 

  • Huang M, Liang X (2006) On the assessment of the impact of reducing parameters and identification of parameter uncertainties for a hydrologic model with applications to ungauged basins. J Hydrol 320(1):37–61

    Article  Google Scholar 

  • Johnson DW, Hunsaker CT, Glass DW, Rau BM, Roath BA (2011) Carbon and nutrient contents in soils from the Kings River Experimental Watersheds, Sierra Nevada Mountains, California. Geoderma 160(3):490–502

    Article  Google Scholar 

  • Kim D, Lim Y-J, Kang M, Choi M (2016) Land response to atmosphere at different resolutions in the Common Land Model over East Asia. Adv Atmos Sci 33:391–408

    Article  Google Scholar 

  • Koster RD, Suarez MJ (1992) Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J Geophys Res Atmos 97:2697–2715

    Article  Google Scholar 

  • Kumar M, Marks D, Dozier J, Reba M, Winstral A (2013) Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models. Adv Water Resour 56:77–89

    Article  Google Scholar 

  • Li Z-C, Wei Z-G, Wang C, Zheng Z-Y, Wei H, Liu H (2012) Simulation and improvement of common land model on the bare soil of Loess Plateau underlying surface. Environ Earth Sci 66:1091–1097

    Article  Google Scholar 

  • Liang X, Xie Z (2003) Important factors in land-atmosphere interactions: surface runoff generations and interactions between surface and groundwater. Glob Planet Change 38(1):101–114

    Article  Google Scholar 

  • Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res 99:14415–14428

    Article  Google Scholar 

  • Liang X, Wood EF, Lettenmaier DP (1996) Surface soil moisture parameterization of the VIC-2L model: evaluation and modification. Glob Planet Change 13(1):195–206

    Article  Google Scholar 

  • Liang X, Wood EF, Lettenmaier DP (1999) Modeling ground heat flux in land surface parameterization schemes. J Geophys Res Atmos 104(D8):9581–9600

    Article  Google Scholar 

  • Liang X-Z, Choi HI, Kunkel KE, Dai YJ, Joseph E, Wang JXL, Kumar P (2005) Surface boundary conditions for mesoscale regional climate models. Earth Interact 9:1–28

    Article  Google Scholar 

  • Liang DW, Zhang T, Fang HH (2007) Anaerobic degradation of dimethyl phthalate in wastewater in a UASB reactor. Water Res 41(13):2879–2884

    Article  Google Scholar 

  • Lindroth A, Mölder M, Lagergren F (2010) Heat storage in forest biomass improves energy balance closure. Biogeosciences 7(1):301–313

    Article  Google Scholar 

  • Lisi PJ, Schindler DE, Cline TJ, Scheuerell MD, Walsh PB (2015) Watershed geomorphology and snowmelt control stream thermal sensitivity to air temperature. Geophys Res Lett 42(9):3380–3388

    Article  Google Scholar 

  • Litaor MI, Williams M, Seastedt TR (2008) Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J Geophys Res Biogeosci 113(G2):G02008

    Article  Google Scholar 

  • Lohmann D, Raschke E, Nijssen B, Lettenmaier DP (1998) Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol Sci J 43(1):131–141

    Article  Google Scholar 

  • Male DH, Granger RJ (1981) Snow surface energy exchange. Water Resour Res 17(3):609–627

    Article  Google Scholar 

  • Maurer D, Le Grand R, Mondloch CJ (2002) The many faces of configural processing. Trends Cogn Sci 6(6):255–260

    Article  Google Scholar 

  • McKay DC, Thurtell GW (1978) Measurements of the energy fluxes involved in the energy budget of a snow cover. J Appl Meteorol 17(3):339–349

    Article  Google Scholar 

  • Medvigy D, Beaulieu C (2012) Trends in daily solar radiation and precipitation coefficients of variation since 1984. J Clim 25:1330–1339

    Article  Google Scholar 

  • Meng CL, Li Z-L, Zhan X, Shi JC, Liu CY (2009) Land surface temperature data assimilation and its impact on evapotranspiration estimates from the common land model. Water Resour Res 45:W02421

    Article  Google Scholar 

  • Miller DA, White RA (1998) A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact 2(2):1–26

    Article  Google Scholar 

  • Mitchell KE, Lohmann D, Houser PR, Wood EF, Schaake JC, Robock A, Cosgrove BA, Sheffield J, Duan Q, Luo L, Higgins RW, Pinker RT, Tarpley JD, Lettenmaier DP, Marshall CH, Entin JK, Pan M, Shi W, Koren V, Meng J, Ramsay BH, Bailey AA (2004) The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res 109(D7). doi:10.1029/2003JD003823

  • Mote PW, Hamlet AF, Clark MP, Lettenmaier DP (2005) Declining mountain snowpack in western North America. Bull Am Meteorol Soc 86(1):39–49

    Article  Google Scholar 

  • Nijssen B, Lettenmaier DP, Liang X, Wetzel SW, Wood EF (1997) Streamflow simulation for continental-scale river basins. Water Resour Res 33(4):711–724

    Article  Google Scholar 

  • Nijssen B, O’Donnell GM, Lettenmaier DP, Lohmann D, Wood EF (2001) Predicting the discharge of global rivers. J Clim 14(15):3307–3323

    Article  Google Scholar 

  • Niu GY, Yang ZL (2006) Assessing a land surface model’s improvements with GRACE estimates. Geophys Res Lett 33:L07401

    Article  Google Scholar 

  • Ohring G, Clapp P (1980) The effect of changes in cloud amount on the net radiation at the top of the atmosphere. J Atmos Sci 37:447–454

    Article  Google Scholar 

  • Oliver SA, Oliver HR, Wallace JS, Roberts AM (1987) Soil heat flux and temperature variation with vegetation, soil type and climate. Agric For Meteorol 39:257–269

    Article  Google Scholar 

  • Parada LM, Liang X (2004) Optimal multiscale Kalman filter for assimilation of near-surface soil moisture into land surface models. J Geophys Res 109(D24). doi:10.1029/2004JD004745

  • Park J, Byun K, Choi M, Jang E, Lee J, Lee Y, Jung S (2015) Evaluation of statistical gap fillings for continuous energy flux (evapotranspiration) measurements for two different land cover types. Stoch Environ Res Risk Assess 29(8):2021–2035

    Article  Google Scholar 

  • Pohl S, Marsh P, Liston GE (2006) Spatial-temporal variability in turbulent fluxes during spring snowmelt. Arct Antarct Alp Res 38(1):136–146

    Article  Google Scholar 

  • Pomeroy JW, Gray DM, Hedstrom NR, Janowicz JR (2002) Prediction of seasonal snow accumulation in cold climate forests. Hydrol Process 16(18):3543–3558

    Article  Google Scholar 

  • Qian T, Dai A, Trenberth KE (2007) Hydroclimatic trends in the Mississippi River basin from 1948 to 2004. J Clim 20(18):4599–4614

    Article  Google Scholar 

  • Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science 243(4887):57–63

    Article  Google Scholar 

  • Ray RL, Beighley RE, Yoon Y (2016) Integrating runoff generation and flow routing in susquehanna river basin to characterize key hydrologic processes contributing to maximum annual flood events. J Hydrol Eng 21(9):04016026

    Article  Google Scholar 

  • Seuffert G, Gross P, Simmer C, Wood EF (2002) The influence of hydrologic modeling on the predicted local weather: two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model. J Hydrometeorol 3(5):505–523

    Article  Google Scholar 

  • Wang GQ, Zhang JY, Jin JL, Pagano TC, Calow R, Bao ZX, Liu CS, Liu YL, Yan XL (2012) Assessing water resources in China using PRECIS projections and a VIC model. Hydrol Earth Syst Sci 16(1):231–240

    Article  Google Scholar 

  • Whitfield B, Jacobs JM, Judge J (2006) Intercomparison study of the land surface process model and the common land model for a Prairie Wetland in Florida. J Hydrometeorol 7:1247–1258

    Article  Google Scholar 

  • Williams CJ, McNamara JP, Chandler DG (2009) Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: the signature of snow and complex terrain. Hydrol Earth Syst Sci 13(7):1325–1336

    Article  Google Scholar 

  • Wood EF, Lettenmaier DP, Zartarian VG (1992) A land-surface hydrology parameterization with subgrid variability for general circulation models. J Geophys Res Atmos 97(D3):2717–2728

    Article  Google Scholar 

  • Ye B, Yang D, Ma L (2012) Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China. Environ Res Lett 7:025201

    Article  Google Scholar 

  • Yuan F, Xie Z, Liu Q, Yang H, Su F, Liang X, Ren L (2004) An application of the VIC-3L land surface model and remote sensing data in simulating streamflow for the Hanjiang River basin. Can J Remote Sens 30(5):680–690

    Article  Google Scholar 

  • Yulin C, Zhifeng G, Li Y (2008) A macro hydrologic model simulation based on remote sensing data. In: 2008 international workshop on earth observation and remote sensing applications

  • Zeng X, Shaikh M, Dai Y, Dickinson RE, Myneni R (2002) Coupling of the common land model to the NCAR community climate model. J Climate 15(14):1832–1854

    Article  Google Scholar 

  • Zhang G, Zhou GS, Yang FL (2010) Dynamics of sensible and latent heat fluxes over a temperate desert steppe ecosystem in Inner Mongolia. J Appl Ecol 21(3):597–603

    Google Scholar 

  • Zhou S, Liang X, Chen J, Gong P (2004) An assessment of the VIC-3L hydrological model for the Yangtze River basin based on remote sensing: a case study of the Baohe River basin. Can J Remote Sens 30(5):840–853

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge NSF supported Southern Sierra Critical Zone Observatory (SS-CZO) for the data. We are indebted to reviewers whose extensive comments greatly improved the manuscript. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2016R1A2B4008312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minha Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Ray, R.L. & Choi, M. Simulations of energy balance components at snow-dominated montane watershed by land surface models. Environ Earth Sci 76, 337 (2017). https://doi.org/10.1007/s12665-017-6655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6655-0

Keywords

Navigation