Skip to main content

Advertisement

Log in

Sources, geochemical speciation, and risk assessment of metals in coastal sediments: a case study in the Bohai Sea, China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

To investigate the sources and toxicity of metals in Bohai Sea sediments, concentration and geochemical speciation of metals of surface sediments were measured. Metal distributions and principal component analysis suggested that Zn, Pb, Cd, and Ag were largely derived from anthropogenic sources, whereas the majority of the other metals studied here were found to have been derived from natural rock weathering and calcareous marine biota. The major sources of anthropogenic metal inputs to the study region are from the mining industry, port transport services, vehicle exhausts, and agricultural runoff. Empirical sediment quality guidelines and the risk assessment code were used to evaluate the metal toxicities in this area. Our results show that Cd presents a high risk to the ecological system because it was found in the non-residual phase, which tends to be weakly bound and highly bioavailable; Cu, Pb, Ni, and Co pose a low risk; Zn and Cr present no risk. The use of the threshold effects level and effects range-low values of Cd and Cr as guidelines for the Bohai Sea are of limited use as they do not account for the bioavailability and toxicity of the elements in marine environments. Assessment of the annual metal fluxes from riverine and atmospheric sources indicates that the largest contributions of metals to the Bohai Sea were derived from the suspended particulate load of rivers. Furthermore, it was found that the main depositional zones for metals in the Bohai Sea were in estuaries and the center mud zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta JA, Faz A, Martinez-Martinez S (2010) Identification of heavy metal sources by multivariable analysis in a typical Mediterranean city (SE Spain). Environ Monit Assess. doi:10.1007/s10661-009-1194-0

    Google Scholar 

  • Baioumy HM (2005) Preliminary data on cadmium and arsenic geochemistry for some phosphorites in Egypt. J Afr Earth Sci 41:266–274. doi:10.1016/j.jafrearsci.2005.03.002

    Article  Google Scholar 

  • Barcellos C, de Lacerda LD, Ceradini S (1997) Sediment origin and budget in Sepetiba Bay (Brazil)—an approach based on multi-elemental analysis. Environ Geol 32(3):203–209. doi:10.1007/s002540050208

    Article  Google Scholar 

  • Bhatt MP, McDowell WH, Gardner KH, Hartmann J (2014) Chemistry of the heavily urbanized Bagmati River system in Kathmandu Valley, Nepal: export of organic matter, nutrients, major ions, silica, and metals.Environ. Earth Sci 71:911–922. doi:10.1007/s12665-013-2494-9

    Article  Google Scholar 

  • Bollhofer A, Rosman KJR (2000) Isotopic source signatures for atmospheric lead: the Southern Hemisphere. Geochim Cosmochim Acta 64:3251–3262. doi:10.1016/S0016-7037(00)00630-X

    Article  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment) (2002) Canadian sediment quality guidelines for the protection of aquatic life. Canadian environmental quality guidelines. Canadian Council of Ministers of the Environment, Winnipeg

    Google Scholar 

  • CEPA (State Environmental Protection Administration of China) (2002) Marine sediment quality (GB 18668-2002). Standards Press of China, Beijing

    Google Scholar 

  • Chen J, Tan M, Li Y, Zhang Y, Lu W, Tong Y, Zhang G, Li Y (2005) A lead isotope record of shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmos Environ 39:1245–1253. doi:10.1016/j.atmosenv.2004.10.041

    Article  Google Scholar 

  • Dahms S, Baker NJ, Greenfield R (2017) Ecological risk assessment of trace elements in sediment: a case study from Limpopo, South Africa. Ecotoxicol Environ Saf 135:106–114. doi:10.1016/j.ecoenv.2016.09.036

    Article  Google Scholar 

  • Duan L, Song AJ, Li X, Yuan H, Li N, Xu Y (2012) Thallium concentrations and sources in the surface sediments of Bohai Bay. Mar Environ Res 73:25–31. doi:10.1016/j.marenvres.2011.10.007

    Article  Google Scholar 

  • Elouear Z, Bouhamed F, Boujelven N, Bouzid J (2016) Assessment of toxic metals dispersed from improperly disposed tailing, Jebel Ressas mineNE Tunisia. Environ Earth Sci 75:254. doi:10.1007/s12665-015-5035-x

    Article  Google Scholar 

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324. doi:10.1016/S0269-7491(00)00243-8

    Article  Google Scholar 

  • Fang Y, Fang G, Zhang Q (2000) Numerical simulation and dynamic study of the winter time circulation of the Bohai Sea. Chin J Oceanol Limnol 18:1–9. doi:10.1016/S0269-7491(00)00243-8

    Article  Google Scholar 

  • Feng H, Jiang H, Gao W, Weinstein MP, Zhang Q, Zhang W, Yu L, Yuan D, Tao J (2011) Metal contamination in sediments of the western Bohai Bay and adjacent estuaries, China. J Environ Manag 92:1185–1197. doi:10.1016/j.jenvman.2010.11.020

    Article  Google Scholar 

  • Gao X, Li P (2012) Concentration and fractionation of trace metals in surface sediments of intertidal Bohai Bay, China. Mar Pollut Bull 64:1529–1536. doi:10.1016/j.marpolbul.2012.04.026

    Article  Google Scholar 

  • Gu YG, Li QS, Fang JH, He BY, Fu HB, Tong ZJ (2014) Identification of heavy metal sources in the reclaimed farmland soils of the pearl river estuary in China using a multivariate geostatistical approach. Ecotoxicol Environ Saf 105:7–12. doi:10.1016/j.ecoenv.2014.04.003

    Article  Google Scholar 

  • Hsu SC, Wong GTF, Gong GC, Shiah FK, Huang YT, Kao SJ, Tsai F, Candice Lung SC, Lin FJ, Lin II, Hung CC, Tseng CM (2010) Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea. Mar Chem 120:116–127. doi:10.1016/j.marchem.2008.10.003

    Article  Google Scholar 

  • Hu N, Huang P, Liu J, Shi X, Ma D, Liu Y (2013) Source apportionment of polycyclic aromatic hydrocarbons in surface sediments of the Bohai Sea, China. Environ Sci Pollut Res 20: 1031–1040. doi:10.1007/s11356-012-1098-3

    Article  Google Scholar 

  • Hu B, Li J, Bi N, Wang H, Yang J, Wei H, Zhao J, Li G, Yin X, Liu M, Zou L, Li S (2015a) Seasonal variability and flux of particulate trace elements from the Yellow River: impacts of the anthropogenic flood event. Mar Pollut Bull 91(1):35–44. doi:10.1016/j.marpolbul.2014.12.030

    Article  Google Scholar 

  • Hu N, Huang P, Zhang H, Zhu A, He L, Zhang J, Liu J, Shi X, Ma D (2015b) Tracing the Pb origin using stable Pb isotope ratios in sediments of Liaodong Bay, China. Cont Shelf Res 111:268–278. doi:10.1016/j.csr.2015.08.029

    Article  Google Scholar 

  • Hu N, Huang P, Zhu A, Yan S, Liu J, Shi X (2017) Geochemical source, deposition, and environmental risk assessment of cadmium in surface and core sediments from the Bohai Sea, China. Environ Sci Pollut Res 24(1):827–843. doi:10.1007/s11356-016-7800-0

    Article  Google Scholar 

  • Iwegbue CMA, Eghwrudje MO, Nwajeia GE, Egboh SHO (2007) Chemical speciation of heavy metals in the Ase river sediment, Niger Delta, Nigeria. Chem Spec Bioavailab 19(3):117–127. doi:10.3184/095422901782775453A

    Article  Google Scholar 

  • Ji WD, Wang WQ, Chen HB, Chen JM, He Q (2011) The ocean environmental quality status and baseline study. Ocean Science Publisher, Beijing (in Chinese)

    Google Scholar 

  • Kamala-Kannan S, PrabhuDassBatvari B, Lee KJ, Kannan N, Krishnamoorthy R, Shanthi K, Jayaprakash M (2008) Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India. Chemosphere 71:1233–1240. doi:10.1016/j.chemosphere.2007.12.004

    Article  Google Scholar 

  • Kim G, Alleman LY, Church TM (2004) Accumulation records of radio nuclides and trace metals in two contrasting Delaware salt marshes. Mar Chem 87:87–96. doi:10.1016/j.marchem.2004.02.002

    Article  Google Scholar 

  • Li L, Dou Z, Zhang C (1998) Numerical modeling of the Lagrangian residual current in the Bohai Sea. Acta Oceanol Sin 7:186–194 (in Chinese)

    Google Scholar 

  • Li F, Gao S, Jia J, Zhao Y (2002) Contemporary deposition rates of fine grained sediment in the Bohai and Yellow Seas. Oceanol Limnol Sin 33(4):364–369 (in Chinese)

    Google Scholar 

  • Li L, Wang X, Liu J, Shi X, Ma D (2014) Assessing metal toxicity in sediments using the equilibrium partitioning model and empirical sediment quality guidelines: a case study in the nearshore zone of the Bohai Sea, China. Mar Pollut Bull 85:114–122. doi:10.1016/j.marpolbul.2014.06.012

    Article  Google Scholar 

  • Liu F, Chen SL, Peng J, Chen GQ (2012) Temporal variations of water discharge and sediment load of Huanghe River, China. Chin Geogr Sci 22:507–521. doi:10.1007/s11769-012-0560-y

    Article  Google Scholar 

  • Liu H, Luo D, Yin B (2013) Model study on the key hydrodynamics in the Bohai Sea. Appl Mech Mater 303–306:2727–2730. doi:10.4028/www.scientific.net/AMM.303-306

    Google Scholar 

  • Long ER, Macdonald DD, Smith SL (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19(1):81–97. doi:10.1007/BF02472006

    Article  Google Scholar 

  • Macdonald DD, Carr RS, Calder FD, Long ER, Ingersoll CG (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5(4):253–278. doi:10.1007/BF00118995

    Article  Google Scholar 

  • Madruga MJ, Silva L, Gomes AR, Libânio A, Reis M (2014) The influence of particle size on radionuclide activity concentrations in Tejo River sediments. J Environ Radioact 132:65–72. doi:10.1016/j.jenvrad.2014.01.019

    Article  Google Scholar 

  • Malferrari D, Brigatti MF, Laurora A, Pini S (2009) Heavy metals in sediments from canals for water supplying and drainage: mobilization and control strategies. J Hazard Mater 161:723–729. doi:10.1016/j.jhazmat.2008.04.014

    Article  Google Scholar 

  • Martin JM, Zhang J, Shi MC, Zhou Q (1993) Actual flux of the Huanghe (Yellow River) sediment to the western Pacific Ocean. Neth J Sea Res 31(3):243–254. doi:10.1016/0077-7579(93)90025-N

    Article  Google Scholar 

  • Martin M, Stanchi S, Jakeer Hossain KM, Imamul Huq SM, Barberis E (2015) Potential phosphorus and arsenic mobilization from Bangladesh soils by particle dispersion. Sci Total Environ 536:973–980. doi:10.1016/j.scitotenv.2015.06.008

    Article  Google Scholar 

  • Morel FMM, Milligan AJ, Saito MA (2003) Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients. In: Elderfield H, Holland HD, Turekian KK (eds) Treatise geochemistry. Elsevier Science Ltd, Cambridge, pp 113–143

    Chapter  Google Scholar 

  • Ouyang Y, Higman J, Thompson J, O’Toole T, Campbell D (2002) Characterization and spatial distribution of heavy metals in sediment from Cedar and Ortegarivers subbasin. J Contam Hydrol 54:19–35. doi:10.1016/S0169-7722(01)00162-0

    Article  Google Scholar 

  • Passos EA, Alves JC, Santos IS, Alves JP, Garcia CAB, Costa ACS (2010) Assessment of trace metals contamination in estuarine sediments using sequential extraction technique and principal component analysis. Microchem J 96:50–57. doi:10.1016/j.microc.2010.01.018

    Article  Google Scholar 

  • Qin YS (1985) Geology of the Bohai Sea. China Ocean Press, Beijing

    Google Scholar 

  • Rath P, Panda UC, Bhatta D, Sahu KC (2009) Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—a case study: Brahamani and Nandira rivers, India. J Hazard Mater 163:632–644. doi:10.1016/j.jhazmat.2008.07.048

    Article  Google Scholar 

  • Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61. doi:10.1039/A807854H

    Article  Google Scholar 

  • Samhan S, Friese K, von Tümpling W, Pöllmann H, Hoetzl H, Ghanem M (2014) Anthropogenic influence of trace metals in sediments of the Al-Qilt catchment, West Bank, Palestine: 1. Contamination factor and bonding forms. Environ Earth Sci 71:1533–1539. doi:10.1007/s12665-013-2559-9

    Article  Google Scholar 

  • Shen F, Liao R, Ali A, Mahar A, Guo D, Li R, Xining S, Awasthi MK, Wang Q, Zhang Z (2017) Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol Environ Saf 139:254–262. doi:10.1016/j.ecoenv.2017.01.044

    Article  Google Scholar 

  • Shepard FP (1954) Nomenclature based on sand–silt–clay ratios. J Sediment Petrol 24:151–158. doi:10.1306/D4269774-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  • Shi J, Liang L, Jiang JX (2005) The speciation and bioavailability of mercury in sediments of Haihe River, China. Environ Int 31:357–365. doi:10.1016/j.envint.2004.08.008

    Article  Google Scholar 

  • Singh KP, Mohan D, Singh VK, Malik A (2005) Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. J Hydrol 312:14–27. doi:10.1016/j.jhydrol.2005.01.021

    Article  Google Scholar 

  • Singh CK, Rina K, Singh RP, Mukherjee S (2014) Geochemical characterization and heavy metal contamination of groundwater in Satluj River Basin. Environ Earth Sci 71:201–216. doi:10.1007/s12665-013-2424-x

    Article  Google Scholar 

  • SOA (State Oceanic Administration) (2004) 2004 Chinese Marine Environmental Quality Report. http://www.soa.gov.cn/zwgk/hygb/zghyhjzlgb/201211/t20121107_5536.html (in Chinese)

  • SOA (State Oceanic Administration) (2012) 2012 Chinese Marine Environmental Quality Report. http://www.soa.gov.cn/zwgk/hygb/zghyhjzlgb/201303/t20130329_24713.html (in Chinese)

  • Steinnes E, Åberg G, Hjelmseth H (2005) Atmospheric deposition of lead in Norway: spatial and temporal variation in isotopic composition. Sci Total Environ 336:105–117. doi:10.1016/j.scitotenv.2004.04.056

    Article  Google Scholar 

  • Stigter JB, Haan HPM, Guicherit R, Dekkers CPA, Daane ML (2000) Determination of cadmium, zinc, copper, chromium and arsenic in crude oil cargoes. Environ Pollut 107:451–464. doi:10.1016/S0269-7491(99)00123-2

    Article  Google Scholar 

  • Sundaray SK (2007) Water quality assessment of Mahanadi River, Orissa, India using multivariate statistical approach. Ph.D. Thesis, Utkal University, Bhubaneswar, India

  • Sundaray SK, Nayak BB, Lin S, Bhatta D (2011) Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi basin, India. J Hazard Mater 186:1837–1846. doi:10.1016/j.jhazmat.2010.12.081

    Article  Google Scholar 

  • Sutherland TF, Petersen SA, Levings CD, Martin AJ (2007) Distinguishing between natural and aquaculture-derived sediment concentrations of heavy metals in the Broughton Archipelago, British Columbia. Mar Pollut Bull 54:1451–1460. doi:10.1016/j.marpolbul.2007.05.010

    Article  Google Scholar 

  • Taylor SE, Matthai C (2001) Small-scale spatial and temporal variance in the concentration of heavy metals in aquatic sediments: a review and some new concepts. Environ Pollut 113:357–372. doi:10.1016/S0269-7491(00)00182-2

    Article  Google Scholar 

  • Tehrani GM, Sany SBT, Hashim R, Salleh A (2016) Predictive environmental impact assessment of total petroleum hydrocarbons in petrochemical wastewater effluent and surface sediment. Environ Earth Sci 75:177. doi:10.1007/s12665-015-5918-1

    Article  Google Scholar 

  • USEPA (2005) Procedures for the derivation of equilibrium partitioning sediment Benchmarks (ESBs) for the protection of benthic organisms: metal mixtures (Cadmium, copper, lead, nickel, silver, and zinc). EPA-600-R-02-011, Environmental Protection Agency, Washington, DC

  • Wang Y, Liang L, Shi J, Jiang G (2005) Chemometrics methods for the investigation of methylmercury and total mercury contamination in mollusks samples collected from coastal sites along the Chinese Bohai Sea. Environ Pollut 135:457–467. doi:10.1016/j.envpol.2004.11.025

    Article  Google Scholar 

  • Wang XL, Cui ZG, Guo Q, Han XR, Wang JT (2009) Distribution of nutrients and eutrophication assessment in the Bohai Sea of China. Chin J Oceanogr Limnol 27(1):177–183. doi:10.1007/s00343-009-0177-x

    Article  Google Scholar 

  • Yang Y, Christakos G, Guo M, Xiao L, Huang W (2017) Space-time quantitative source apportionment of soil heavy metal concentration increments. Environ Pollut 223:560–566. doi:10.1016/j.envpol.2017.01.058

    Article  Google Scholar 

  • Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070. doi:10.1006/ecss.2001.0879

    Article  Google Scholar 

  • Zhang J, Liu SM, Huang WW (1993) Atmospheric input of particulate heavy metals to the Yellow Sea. Ambio 22:196–199. http://www.jstor.org/stable/4314069

  • Zhang Y, Song J, Yuan H, Xu Y, He Z (2010) Concentrations of cadmium and zinc inseawater of Bohai Bay and their effects on biomarker responses in the bivalve Chlamys farreri. Arch Environ Contam Toxicol 59:120–128. doi:10.1007/s00244-009-9461-1

    Article  Google Scholar 

  • Zhao YY, Yan MC (1994) Geochemistry of the China Shelf Sea. Science Press, Beijing, pp 1–202

    Google Scholar 

  • Zheng N, Wang Q, Liang Z, Zheng D (2008) Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environ Pollut 154:135–142. doi:10.1016/j.envpol.2008.01.001

    Article  Google Scholar 

  • Zhou H, Peng X, Pan J (2004) Distribution, source and enrichment of some chemical elements in sediments of the Pearl River Estuary, China. Cont Shelf Res 24:1857–1875. doi:10.1016/j.csr.2004.06.012

    Article  Google Scholar 

  • Zhou F, Guo HC, Liu L (2007) Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong. Environ Geol 53:295–305. doi:10.1007/s00254-007-0644-7

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by the National Natural Science Foundation of China (Grant Nos. 41376073, 41076032 and 40806025), and the Chinese State Oceanic Administration (Grant No. 201105003). The authors thank Zhu Aimei, GaoJinjin, and Wang Xiaojing for their help in sample treatment. The authors also thank anonymous reviewers for their suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningjing Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, N., Liu, J., Huang, P. et al. Sources, geochemical speciation, and risk assessment of metals in coastal sediments: a case study in the Bohai Sea, China. Environ Earth Sci 76, 309 (2017). https://doi.org/10.1007/s12665-017-6599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6599-4

Keywords

Navigation