Skip to main content

Advertisement

Log in

Hydrological responses to rainfall variability and dam construction: a case study of the upper Senegal River basin

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The understanding of the spatial and temporal dynamic of river systems is essential for developing sustainable water resource management plan. For the Senegal River, this subject is very complex according to the context of (1) transboundary basin, (2) several contrasted climatic zones (Guinea, South Sudanian, North Sudanian and Sahelian) with high rainfall variability and (3) high human pressures (dam construction and water uses). From 1954 to 2000, 80% (mean value) of the Senegal River flows recorded downstream part of the basin are provided by three majors tributaries (Bafing, Bakoye and Faléme) located in the upstream part. Then, in our study, this upper Senegal River basin was chosen in order to investigate the hydrological responses to rainfall variability and dam construction. Two nonparametric statistical methods, Mann–Kendall and Hubert test, were used to detect the long-term changes in the time series of precipitation and water discharge (1954–2000) at the annual and seasonal scales. The continuous wavelet transform (Morlet Wavelet) was employed to characterize the different mode in the water discharge variability. Flow duration curve and cumulative curve methods were used to assess the impact of dams on the hydrological regime of the Senegal River. Results showed that the Senegal River flows have been changing under the influence of both rainfall variation and dam construction. The long-term evolution of water discharge depend on long-term rainfall variability: The wet periods of the 1950s and 1960s correspond to periods of higher river flows, while the droughts of the 1970s and 1980s led to unprecedented river flows deficits. The new period, since 1994, show a high inter-annual variability of rainfall and discharge without clear trend. At seasonal scale, the results showed also a strong relationship between rainfall and runoff (R 2 > 0.8) resulting from alternating wet and dry seasons and rapid hydrological responses according to annual rainfall. Nevertheless, the observed flows during dry seasons highlighted the influence of water storage and restitution of infiltrated waters in soils and surficial formations during wet seasons. In the dry seasons, the water budget of the three upstream tributaries showed a water deficit at the downstream gauging station. This deficit was characterized by water loss to underlying aquifers and highlighted the influence of geological setting on water balance. However, in this context, water restitution during the dry season remained dependent on climatic zone and on the total annual rainfall volume during the previous wet season. The results have highlighted an impact of the Manantali dam previously obscured: The dam has no effect on the regulation of high river flows. That is what explains that since its construction in 1988, flooding of coastal cities, like Saint-louis, by seasonal river floods has not ceased. The flooding risk in coastal cities is not avoided, and the dams caused hyper-salinization of the Senegal lower estuary. The breach created in the coastal barrier of the Langue of Barbary in October 2003 promotes direct export of excess floodwater to the sea and reduces this risk of flooding in the delta area. But, this solution led to considerable loss of potential water resources, and the authors recommend a new water management plan with a global focus. However, this study shows the positives impacts of the two dams. They allow the availability of freshwater in order to support agricultural irrigation in the valley and delta zone, in particular during low flows periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albergel J, Lamagat JP (1991) Plan directeur de la haute vallée du fleuve Sénégal: Climatologie, hydrologie. Rapport final, ORTOM, p 125

  • Ali A, Lebel T (2009) The Sahelian standardized rainfall index revisited. Int J Climatol 29:1705–1714

    Article  Google Scholar 

  • Anctil F, Coulibaly P (2004) Wavelet analysis of the inter-annual variability in southern quebec streamflow. J Clim 17:163–173

    Article  Google Scholar 

  • ANSD (2014) Recensement général de la Population, de l’Habitat, de l’Agriculture et de l’Elevage au Sénégal. Rapport final, Agence Nationale de la Statistique et de la Démographie, p 418

  • BAD/BID (2013) Projet d’alimentation en eau potable de la ville de Nouakchott (Aftout Essahli). Rapport d’évaluation intérimaire conjointe, Banque Africaine de Développement (BAD)/Banque Islamique de Développement (BID), de performance du projet. Départements de l’évaluation des operations, République Islamique de Mauritanie, p 88

  • Bell MA, Lamb PJ (2006) Integration of weather system variability to multidecadal regional climate change: the West African sudan-sahel zone 1951–98. J Clim 19(20):5343–5365

    Article  Google Scholar 

  • Bhavnani R, Vordzorgbe S, Owor M, Bousquet F (2008) Report on the status of disaster risk reduction in the sub-saharian Africa region. Commission of the African Union, United nations and the World Bank, http://www.unisdr.org/files/2229_DRRinSubSaharanAfricaRegion

  • Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden Day, San Francisco

    Google Scholar 

  • Bricquet JP, Bamba F, Mahe G, Toure M, Olivry JC (1997) Evolution récente des ressources en eau de l’Afrique atlantique. Rev Sci Eau 3:321–337

    Google Scholar 

  • Caldwell JC (1975) La sécheresse dans le Sahel et ses conséquences démographiques. Cahier OLC, n°8, p 116

  • Cappelaere B, Descroix L, Lebel T, Boulain N, Ramier D, Laurent JP, Favreau G, Boubkraoui S, Boucher M, Bouzou Moussa I, Chaffard V, Hiernaux P, Issoufou HBA, Le Breton E, Mamadou I, Nazoumou Y, Oi M, Ottlé C, Quantin G (2009) The AMMA-CATCH experiment in the cultivated Sahelian area of south-west Niger—investigating water cycle response to a fluctuating climate and changing environment. J Hydrol 375:34–51

    Article  Google Scholar 

  • Cisse MT, Sambou S, Dieme Y, Diatta C, Bop B (2014) Analyse des écoulements dans le bassin du fleuve Sénégal de 1960 à 2008. Revue des sciences de l’eau 27(2):167–187

    Article  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836

    Article  Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610

    Article  Google Scholar 

  • Dai A, Lamb PJ, Trenberth KE, Hulme M, Jones PD, Xie P (2004) The recent Sahel Drough is real. Int J Climatol 24:1323–1331

    Article  Google Scholar 

  • Dai SB, Yang SL, Cai AM (2008) Impacts of dams on the sediment flux of the Pearl River, southern China. CATENA 76:36–43

    Article  Google Scholar 

  • Descroix L, Mahé G, Lebel T, Favreau G, Galle S, Gautier E, Olivry J-C, Albergel J, Amogu O, Cappelaere B, Dessouassi R, Diedhiou A, Le Breton E, Mamadou I, Sighomnou D (2009) Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: a synthesis. J Hydrol 375:90–102

    Article  Google Scholar 

  • Descroix L, Genthon P, Amogu O, Rajot JL, Sighomnou D, Vauclin M (2012) Change in Sahelian Rivers hydrograph: the case of recent red floods of the River Niger in the Niamey region. Glob Planet Change 98–99:18–30

    Article  Google Scholar 

  • Diaw M, Faye S, Stichler W, Maloszewski P (2012) Isotopic and geochemical characteristics of groundwater in the Senegal River delta aquifer: implication of recharge and flow regime. Environ Earth Sci 66:1011–1020

    Article  Google Scholar 

  • Dione O (1996) Evolution climatique récente et dynamique fluviale dans les hauts bassins des fleuves Sénégal et Gambie. Thèse de doctorat, Université Lyon 3 Jean Moulin, p 477

  • Durand P, Anselme B, Thomas YF (2010) L’impact de l’ouverture de la brèche dans la langue de Barbarie à Saint-Louis du Sénégal en 2003: un changement de nature de l’aléa inondation? Cybergeo. Eur J Geogr Environnement, Nature, Paysage, document 496, p 25

  • El Janyani S, Massei N, Dupont JP, Fournier M, Dörfliger N (2012) Hydrological responses of the chalk aquifer to the regional climatic signal. J Hydrol 464–465:485–493

    Article  Google Scholar 

  • El Janyani S, Dupont JP, Massei N, Slimani S, Dörfliger N (2014) Hydrological role of karst in the Chalk aquifer of Upper Normandy, France. Hydrogeol J 22:663–677. doi:10.1007/s10040-013-1083-z

    Google Scholar 

  • Fall S, Semazzi FHM, Miyogi DDS, Anyah RO, Bowden J (2006) Spatio-temporal climate variability over Senegal and its relationship to global climate. Int J Climatol 26:2057–2076

    Article  Google Scholar 

  • Faure H, Gac J (1981) Will the Sahelian drought end in 1985? Nature 291:475–478

    Article  Google Scholar 

  • Favreau G, Cappelaere B, Massuel S, Leblanc M, Boucher M, Boulain N, Leduc C (2009) Land clearing, climate variability and water resources increase in semiarid south-west Niger: a review. Water Resour Res 45:W00A16. doi:10.1029/2007WR006785

    Article  Google Scholar 

  • Fischer T, Gemmer M, Su B, Scholten T (2013) Hydrological long-terme dry and wet periods in the Xijiang River basin, South China. Hydrol Earth Syst Sci 17:135–148

    Article  Google Scholar 

  • Hipel KW, McLeod AI (1994) Time series modelling of water resources and environmental systems. Elsevier, Amsterdam. ISBN 0-444-89270-2

    Google Scholar 

  • Hubert P, Bader J-C, Bendjoudi H (2007) Un siècle de débits annuels du fleuve Sénégal. Hydrol Sci J 52(1):68–73

    Article  Google Scholar 

  • Hulme M (1992) Rainfall changes in Africa: 1931–1960 to 1961–1990. Int J Climatol 12:685–699

    Article  Google Scholar 

  • Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden Days, San Francisco, p 525

    Google Scholar 

  • Kamagaté B (2006) Fonctionnement hydrologique et origines des écoulements sur un bassin versant de milieu tropical de socle au Bénin: bassin versant de la Donga (haute vallée de l’Ouémé). Thèse de Doctorat, Université de Montpellier II, France

  • Kamagaté B, Séguis L, Favreau G, Seidel J-L, Descloitres M, Affaton P (2007) Processus et bilan des flux hydriques d’un bassin versant de milieu tropical de socle au Bénin (Donga, Haut Ouémé). Comptes Rendus Géoscience 339:418–429

    Article  Google Scholar 

  • Kannan N, Jeong J (2011) An approach for estimating stream health using flow duration curves and indices of hydrologic alteration. Report of Texas AgriLife Research and the U.S. Environmental Protection Agency, p 59

  • Khan MYA, Daityari S, Chakrapani GJ (2016) Factors responsible for temporal and spatial variations in water and sediment discharge in Ramganga River, Ganga Basin, India. Environ Earth Sci 75(283):2–18

    Google Scholar 

  • Korzoun VI, Sokolov AA, Budyko MI, Voskresensky KP, Kalinin GP, Kono-plyantsev AA, Korotkevich ES, L’vovich MI (1978) Atlas of world water balance. United Nations Educational, Scientific and Cultural Organization, Paris

    Google Scholar 

  • L’Hôte Y, Mahé G, Somé B, Triboulet JP (2002) Analysis of a Sahelian annual rainfall index from 1896 to 2000; the drought continues. Hydrol Sci J 47:563–572

    Article  Google Scholar 

  • L’vovich MI, White GF (1990) Use and transformation of terrestrial water Systems. In Anthropogenic disturbance of the terrestrial water cycle. BioScience 50(9):753–765

    Google Scholar 

  • Labat D, Ronchail J, Guyot JL (2005) Recent advances in wavelet analyses: part 2-Amazon, Parana, Orinoco and Congo discharges time scale variability. J Hydrol 314(1–4):289–311

    Article  Google Scholar 

  • Larocque M, Mangin A, Razack M, Banton O (1998) Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J Hydrol 205:217–231

    Article  Google Scholar 

  • Lavieren BV, Wetten VJ (1990) Profil de l’environnement de la vallée du fleuve Sénégal. 40 fig., 16 photos, 68p., Euroconsult, RIN

  • Le Barbé L, Alé G, Millet B, Texier H, Borel Y, Gualde R (1993) Les ressources en eaux superficielles de la République du Bénin. Monographie hydrologique Orstom, 11, Orstom editions, Paris, p 535

    Google Scholar 

  • Le Barbé L, Lebel T, Tapsoba D (2002) Rainfall variability in West Africa during the years 1950–1990. J Clim 15:187–2002

    Article  Google Scholar 

  • Lebel T, Ali A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J Hydrol 375(1–2):52–64

    Article  Google Scholar 

  • Lebel T, Vischel T (2005) Climat et cycle de l’eau en zone tropicale: un problème d’échelle. C R Geosci 337:29–38

    Article  Google Scholar 

  • Lebel T, Diedhiou A, Laurent H (2003) Seasonal cycle and interannual variability of the Sahelian rainfall at hydrological scales. J Geophys Res 108:8389–8392

    Article  Google Scholar 

  • Leduc C, Favreau G, Schroeter P (2001) Long-term rise in a Sahelian water-table: the continental terminal in South-West Niger. J Hydrol 243(1–2):43–54

    Article  Google Scholar 

  • Mahé G, Paturel JE (2009) 1896–2006 Sahelian annual rainfall variability and runoff increase of Sahelian Rivers. C R Geosci 341:538–546

    Article  Google Scholar 

  • Mahé G, Dessouassi R, Cissoko B, Olivry JC (1998) Comparaison des fluctuations interannuelles de piézometrie, precipitation et debit sur le bassin versant du Bani à Douna au Mali. Water ResourcesVariability in Africa during the XXth Century In: Proceedings of the Abidjan’98 Conference held at Abidjan, Cote d’lvoire, IAHS, p 252

  • Mahé G, Olivry JC, Dessouassi R, Orange D, Bamba F, Servat E (2000) Relations eaux de surface—eaux souterraines d’une rivière tropicale au Mali. Comptes Rendus de l’Academie des Sciences, Serie IIa 330, 689–692

  • Mahé G, Paturel JE, Servat E, Conway D, Dezetter A (2005) Impact of land use change on soil water holding capacity and river modelling of the Nakambe River in Burkina-Faso. J Hydrol 300:33–43

    Article  Google Scholar 

  • McKee TBN, Doesken J, Kleist J (1993) The relationship of drought frequency and duration to time scales. Eight Conference on Applied Climatology. American Meteorological Society, Anaheim, pp 179–184

    Google Scholar 

  • Michel P (1973) Les bassins des fleuves Sénégal et Gambie. Étude géomorphologique. Thèse, Université de Strasbourg, Mémoire ORSTOM, Paris, n° 63, 3 tomes, 752 p

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216

    Article  Google Scholar 

  • Nicholson SE, Some B, Kone B (2000) An analysis of recent rainfall conditions in West Africa, including the rainy seasons of the 1997 E1Nino and the 1998 La Nina years. J Clim 13:2628–2640

    Article  Google Scholar 

  • Olivry JC, Bricquet JP, Mahé G (1993) Vers un appauvrissement durable des ressources en eau de l’Afrique humide ? Hydrology of Warm Humid Regions In: Proceedings of the Yokohama Symposium, July1993), IAHS Publ, 216, 67–78

  • Ozer P, Erpicum M, Demarée G, Vandiepenbeeck M (2003) The Sahelian drought may have ended during 1990s. Hydrol Sci J 48(3):489–492

    Article  Google Scholar 

  • Padilla AA, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168:75–89

    Article  Google Scholar 

  • Paturel JP, Servat E, Kouamé B, Lubès-Niel H, Ouedraogo M, Masson JM (1997) Climatic variability in humid Africa along the Gulfe of Guinea, Part II: an integrated regional approach. J Hydrol 191:16–36

    Article  Google Scholar 

  • Rochette, C. 1974. Le bassin du fleuve Sénégal. Monographies hydrologique, N°1 ORSTOM, 450 p

  • Rojas O, Vrieling A, Rembold F (2011) Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens Environ 115:343–352

    Article  Google Scholar 

  • Rossi A, Massei N, Laignel B, Sebag D, Copard Y (2009) The response of the Mississippi River to climate fluctuations and reservoir construction as indicated by wavelet analysis of stream flow and suspended-sediment load, 1950–1975. J Hydrol 377(3–4):237–244

    Article  Google Scholar 

  • Roudier P, Ducharne A, Feyen L (2014) Climate change impacts on runoff in West Africa: a review. Hydrol Earth Syst Sci 18:2789–2801

    Article  Google Scholar 

  • Sadowski J (1996) Investigation of signal characteristics using the continuous wavelet transform. Johns Hopkins APL Tech Dig 17(3):258–269

    Google Scholar 

  • Sakho I, Mesnage V, Deloffre J, Lafite R, Niang I, Faye G (2011) The influence of natural and anthropogenic factors on mangrove dynamics over 60 years: the Somone Estuary, Senegal. Estuar Coast Shelf Sci 94:93–101

    Article  Google Scholar 

  • Schneider K, Farge M, (2006) Wavelets: Mathematical theory. In: Françoise JP, Naber G, Tsun TS (eds) Encyclopedia of mathematical physics, pp 426–438

  • Séguis L, Cappelaere B, Milési G, Peugeot C, Massuel S, Favreau G (2004) Simulated impacts of climate change and land-clearing on runoff from a small Sahelian catchment. Hydrol Process 18:3401–3413

    Article  Google Scholar 

  • Servat E, Paturel JE, Kouame B, Travaglio M, Ouedraogo M, Bqyer JF, Lubes- Niel H, Fritsch JM, Masson JM, Marieu B (1998) Identification, caracterisation et consequences d’une variabilite hydrologique en Afrique de I’Ouest et centrale. IAHS Publication 252:323–337

    Google Scholar 

  • Stige LC, Stave J, Chan KS, Ciannelli L, Pretorelli N, Glantz P, Herren HR, Stenseth NC (2006) The effect of climate variation on agro-pastoral production in Africa. In: Proceedings of the National Academy of Sciences, USA 103, 3049–3053

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Troin M, Vallet-Coulomb C, Piovano E, Sylvestre F (2012) Rainfall–runoff modeling of recent hydroclimatic change in a subtropical lake catchment: laguna Mar Chiquita, Argentina. J Hydrol 475:379–391

    Article  Google Scholar 

  • Vicente-Serranoa SM, Beguería S, Gimeno L, Eklundh L, Giuliani G, Weston D, El Kenawy A, López-Moreno JI, Nieto R, Ayenew T, Konte D, Ardö J, Pegram GGS (2012) Challenges for drought mitigation in Africa: the potential use of geospatial data and drought information systems. Appl Geogr 34:471–486

    Article  Google Scholar 

  • Vörösmarty CJ, Sahagian D (2000) Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50(9):753–765

    Article  Google Scholar 

  • Vörösmarty CJ, Sharma KP, Fekete BM, Copeland AH, Holden J, Marble J, Lough JA (1997) The storage and aging of continental runoff in large reservoir systems of the world. Ambio 26:210–219

    Google Scholar 

  • Walling DE, Fang D (2003) Recent trends in the suspended sediment loads of the world rivers. Glob Planet Change 39:111–126

    Article  Google Scholar 

  • Wisner B, Blaikie P, Cannon T, Davis L (2003) At risk: natural hazards, people’s vulnerability and disasters, 2nd edition, p 124

  • Yue S, Pilon P (2004) A comparison of the power of the t test, MannKendall and bootstrap tests for trend detection. Hydrol Sci J 49(1):21–37

    Article  Google Scholar 

  • Zhang S, Lu XX (2009) Hydrological responses to precipitation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China. CATENA 77:130–142

    Article  Google Scholar 

  • Zhang S, Lu XX, Higgitt DL, Chen CTA, Han J, Sun H (2008) Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Glob Planet Change 60:365–380

    Article  Google Scholar 

Download references

Acknowledgements

This work is a contribution to the “MARC Project,” an international collaboration between the Universities of Rouen (France) and Thiès (Senegal). The authors would like to thank Mr. Moussa Sall (Centre de Suivi Ecologique de Dakar) and the Hydraulic division of Saint-Louis for providing access to the dataset. The authors warmly acknowledge the anonymous reviewers who assessed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issa Sakho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakho, I., Dupont, JP., Cisse, M.T. et al. Hydrological responses to rainfall variability and dam construction: a case study of the upper Senegal River basin. Environ Earth Sci 76, 253 (2017). https://doi.org/10.1007/s12665-017-6570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6570-4

Keywords

Navigation