Skip to main content

Advertisement

Log in

Accumulation behavior of toxic elements in the soil and plant from Xinzhuangzi reclaimed mining areas, China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The concentration and distribution characteristics of toxic elements in soil and plant were investigated in the coal refuse reclaimed areas of Huainan, China. Ninety soil samples from different depth (0–20, 20–40, 40–60 cm) and 120 plant samples were collected based on grid sampling method. The concentrations of the selected toxic elements (As, Cd, Cu, Ni, Pb and Zn) in the soil and plant samples were determined by using inductively coupled plasma mass spectrometry. The elevated concentrations of toxic elements in the soils at the depth of 20–40 and 40–60 cm suggested that the coal refuse reclamation may lead to potential environmental impacts. The toxic element tolerance could be observed in all the selected plant samples. The concentrations of toxic elements in the underground tissues were higher than that of aboveground tissues. Conclusively, the present study provided a comprehensive evaluation of soil and plant toxic element implications from coal refuse reclaimed areas in China and was also helpful for environmental protection and monitoring the safety of plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamo P, Iavazzo P, Albanese S, Agrelli D, De Vivo B, Lima A (2014) Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils. Sci Total Environ 500:11–22. doi:10.1016/j.scitotenv.2014.08.085

    Article  Google Scholar 

  • Ash C, Drabek O, Tejnecky V, Jehlicka J, Michon N, Boruvka L (2016) Sustainable soil washing: shredded card filtration of potentially toxic elements after leaching from soil using organic acid solutions. Plos One 11(2):ARTN e0149882. doi:10.1371/journal.pone.0149882

    Article  Google Scholar 

  • Bai XF, Li WH, Chen YF, Jiang Y (2007) The general distributions of trace elements in Chinese coals. Coal Qual Technol 1:1–4

    Google Scholar 

  • Bian ZF, Dong JH, Lei SG, Leng HL, Mu SG, Wang H (2009) The impact of disposal and treatment of coal mining wastes on environment and farmland. Environ Geol 58(3):625–634. doi:10.1007/s00254-008-1537-0

    Article  Google Scholar 

  • Boim AGF, Melo LCA, Moreno FN, Alleoni LRF (2016) Bioconcentration factors and the risk concentrations of potentially toxic elements in garden soils. J Environ Manag 170:21–27. doi:10.1016/j.jenvman.2016.01.006

    Article  Google Scholar 

  • Cabon JY, Burel L, Jaffrennou C, Giamarchi P, Bautin F (2007) Study of trace metal leaching from coals into seawater. Chemosphere 69(7):1100–1110. doi:10.1016/j.chemosphere.2007.04.018

    Article  Google Scholar 

  • Dellantonio A, Fitz WJ, Custovic H, Repmann F, Schneider BU, Grunewald H, Gruber V, Zgorelec Z, Zerem N, Carter C, Markovic M, Puschenreiter M, Wenzel WW (2008) Environmental risks of farmed and barren alkaline coal ash landfills in Tuzla, Bosnia and Herzegovina. Environ Pollut 153(3):677–686. doi:10.1016/j.envpol.2007.08.032

    Article  Google Scholar 

  • Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30(2):219–230. doi:10.1016/J.Pecs.2003.10.004

    Article  Google Scholar 

  • Dong JH, Yu M, Bian ZF, Wang Y, Di CL (2011) Geostatistical analyses of heavy metal distribution in reclaimed mine land in Xuzhou, China. Environ Earth Sci 62(1):127–137. doi:10.1007/s12665-010-0507-5

    Article  Google Scholar 

  • Dong JH, Yu M, Bian ZF, Zhao YD, Cheng W (2012) The safety study of heavy metal pollution in wheat planted in reclaimed soil of mining areas in Xuzhou, China. Environ Earth Sci 66(2):673–682. doi:10.1007/s12665-011-1275-6

    Article  Google Scholar 

  • dos Santos SX, Cavalheiro ÉTG (2016) Determination of hydroquinone with a carbon nanotube/polyurethane resin composite electrode. Anal Lett 49(10):1513–1525. doi:10.1080/00032719.2015.1113416

    Article  Google Scholar 

  • dos Santos-Araujo SN, Alleoni LRF (2016) Concentrations of potentially toxic elements in soils and vegetables from the macroregion of Sao Paulo, Brazil: availability for plant uptake. Environ Monit Assess 188(2):ARTN 92. doi:10.1007/s10661-016-5100-2

    Article  Google Scholar 

  • Duval BD, Dijkstra P, Natali SM, Megonigal JP, Ketterer ME, Drake BG, Lerdau MT, Gordon G, Anbar AD, Hungate BA (2011) Plant-Soil distribution of potentially toxic elements in response to elevated atmospheric CO2. Environ Sci Technol 45(7):2570–2574. doi:10.1021/es102250u

    Article  Google Scholar 

  • Fang T, Liu GJ, Zhou CC, Yuan ZJ, Lam PKS (2014) Distribution and assessment of Pb in the supergene environment of the Huainan Coal Mining Area, Anhui, China. Environ Monit Assess 186(8):4753–4765. doi:10.1007/S10661-014-3735-4

    Article  Google Scholar 

  • Farrell M, Rangott G, Krull E (2013) Difficulties in using soil-based methods to assess plant availability of potentially toxic elements in biochars and their feedstocks. J Hazard Mater 250:29–36. doi:10.1016/j.jhazmat.2013.01.073

    Article  Google Scholar 

  • Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51(2):225–227

    Article  Google Scholar 

  • Gibbs K, Walshe JM (1977) Effect of certain chelating compounds on urinary-excretion of copper by rat—observations on their clinical significance. Clin Sci Mol Med 53(4):317–320

    Google Scholar 

  • Li ZY, Ma ZW, van der Kuijp TJ, Yuan ZW, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468:843–853. doi:10.1016/j.scitotenv.2013.08.090

    Article  Google Scholar 

  • Liu J, Zhang XH, Li TY, Wu QX, Jin ZJ (2014) Soil characteristics and heavy metal accumulation by native plants in a Mn mining area of Guangxi, South China. Environ Monit Assess 186(4):2269–2279. doi:10.1007/S10661-013-3535-2

    Article  Google Scholar 

  • Margui E, Iglesias M, Camps F, Sala L, Hidalgo M (2016) Long-term use of biosolids as organic fertilizers in agricultural soils: potentially toxic elements occurrence and mobility. Environ Sci Pollut Res 23(5):4454–4464. doi:10.1007/s11356-015-5618-9

    Article  Google Scholar 

  • McIlwaine R, Cox SF, Doherty R, Palmer S, Ofterdinger U, McKinley JM (2014) Comparison of methods used to calculate typical threshold values for potentially toxic elements in soil. Environ Geochem Health 36(5):953–971. doi:10.1007/s10653-014-9611-x

    Article  Google Scholar 

  • Muller G (1979) Heavy-metal concentrations (Cd, Zn, Pb, Cu, Cr) in tobacco of cigarettes common in Germany. Chem Ztg 103(4):133–137

    Google Scholar 

  • Pekey H, Karakas D, Ayberk S, Tolun L, Bakoglu M (2004) Ecological risk assessment using trace elements from surface sediments of Izmit Bay (Northeastern Marmara Sea) Turkey. Mar Pollut Bull 48(9–10):946–953. doi:10.1016/j.marpolbul.2003.11.023

    Article  Google Scholar 

  • Qasim B, Motelica-Heino M, Joussein E, Soubrand M, Gauthier A (2016) Diffusive gradients in thin films, Rhizon soil moisture samplers, and indicator plants to predict the bioavailabilities of potentially toxic elements in contaminated technosols. Environ Sci Pollut Res 23(9):8367–8378. doi:10.1007/s11356-015-5975-4

    Article  Google Scholar 

  • Qin JH, Nworie OE, Lin CX (2016) Particle size effects on bioaccessible amounts of ingestible soil-borne toxic elements. Chemosphere 159:442–448. doi:10.1016/j.chemosphere.2016.06.034

    Article  Google Scholar 

  • Reimann C, Fabian K, Schilling J, Roberts D, Englmaier P (2015) A strong enrichment of potentially toxic elements (PTEs) in Nord-Trondelag (central Norway) forest soil. Sci Total Environ 536:130–141. doi:10.1016/j.scitotenv.2015.07.032

    Article  Google Scholar 

  • Rinklebe J, Shaheen SM, Frohne T (2016) Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere 142:41–47. doi:10.1016/j.chemosphere.2015.03.067

    Article  Google Scholar 

  • Rossini Oliva S, Mingorance MD (2006) Assessment of airborne heavy metal pollution by aboveground plant parts. Chemosphere 65(2):177–182. doi:10.1016/J.Chemosphere.2006.03.003

    Article  Google Scholar 

  • Rothwell KA, Cooke MP (2015) A comparison of methods used to calculate normal background concentrations of potentially toxic elements for urban soil. Sci Total Environ 532:625–634. doi:10.1016/j.scitotenv.2015.06.083

    Article  Google Scholar 

  • Serbula SM, Miljkovic DD, Kovacevic RM, Ilic AA (2012) Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicol Environ Saf 76:209–214. doi:10.1016/J.Ecoenv.2011.10.009

    Article  Google Scholar 

  • Solgi E, Esmaili-Sari A, Riyahi-Bakhtiari A, Hadipour M (2012) Soil contamination of metals in the three industrial estates, Arak, Iran. Bull Environ Contam Toxicol 88(4):634–638. doi:10.1007/s00128-012-0553-7

    Article  Google Scholar 

  • Sun RY, Liu GJ, Zheng LG, Chou CL (2010) Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China. Int J Coal Geol 81(2):81–96. doi:10.1016/J.Coal.2009.12.001

    Article  Google Scholar 

  • Tang Q, Liu GJ, Zhou CC, Zhang H, Sun RY (2013) Distribution of environmentally sensitive elements in residential soils near a coal-fired power plant: potential risks to ecology and children’s health. Chemosphere 93(10):2473–2479. doi:10.1016/j.chemosphere.2013.09.015

    Article  Google Scholar 

  • Vassilev SV, Baxter D, Vassileva CG (2013) An overview of the behaviour of biomass during combustion: part I. Phase-mineral transformations of organic and inorganic matter. Fuel 112:391–449. doi:10.1016/J.Fuel.2013.05.043

    Article  Google Scholar 

  • Wahsha M, Fontana S, Nadimi-Goki M, Bini C (2014) Potentially toxic elements in foodcrops (Triticum aestivum L., Zea mays L.) grown on contaminated soils. J Geochem Explor 147:189–199. doi:10.1016/j.gexplo.2014.07.009

    Article  Google Scholar 

  • Wei FS, Chen JS, Wu YY, Zheng CJ (1991) Study on the background contents on 61 elements of soils in China. China J Environ Sci 12:12–19 (in Chinese with English abstract)

    Google Scholar 

  • Yang XY, Sun LG, Zhang ZF, Xie ZQ, Cai ZY, Li MZ (1997) The soil element background values and assessment on the soil environmental quality in Huainan area. Acta Pedol Sin 34:344–347 (in Chinese with English abstract)

    Google Scholar 

  • You M, Huang YE, Lu J, Li CP (2015) Characterization of heavy metals in soil near coal mines and a power plant in Huainan, China. Anal Lett 48(4):726–737. doi:10.1080/00032719.2014.940531

    Article  Google Scholar 

  • Yousaf B, Liu GJ, Wang RW, Imtiaz M, Zia-ur-Rehman M, Munir MAM, Niu ZY (2016) Bioavailability evaluation, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas. Environ Sci Pollut Res 23:22443–22453. doi:10.1007/s11356-016-7449-8

    Article  Google Scholar 

  • Zhang WT, You M, Hu YH (2016) The distribution and accumulation characteristics of heavy metals in soil and plant from Huainan coalfield, China. Environ Prog Sustain Energy 35(4):1098–1104. doi:10.1002/ep.12336

    Article  Google Scholar 

  • Zhao YC, Zhang JY, Chou CL, Li Y, Wang ZH, Ge YT, Zheng CG (2008) Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. Int J Coal Geol 73(1):52–62. doi:10.1016/j.coal.2007.07.007

    Article  Google Scholar 

  • Zhou CC, Liu GJ, Wu D, Fang T, Wang RW, Fan X (2014) Mobility behavior and environmental implications of trace elements associated with coal gangue: a case study at the Huainan Coalfield in China. Chemosphere 95:193–199. doi:10.1016/j.chemosphere.2013.08.065

    Article  Google Scholar 

  • Zhuang P, Zou B, Li NY, Li ZA (2009) Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health. Environ Geochem Health 31(6):707–715. doi:10.1007/S10653-009-9248-3

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science and Technology Support Program (1012BAC10B02), Joint Project of Anhui University and the Creative Project of National Engineering Laboratory for Protection of Colliery Eco-environment. We acknowledge editors and reviewers for polishing the language of the paper and for in-depth discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yuan, L. & Xu, C. Accumulation behavior of toxic elements in the soil and plant from Xinzhuangzi reclaimed mining areas, China. Environ Earth Sci 76, 226 (2017). https://doi.org/10.1007/s12665-017-6535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6535-7

Keywords

Navigation