Skip to main content
Log in

Isotope evidence for quantifying river evaporation and recharge processes in the lower reaches of the Yellow River

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Evaporation and recharge are important hydrological processes in the water cycle. However, accurately quantifying these two processes of river remains to be difficult due to their spatial heterogeneity and the limitations of traditional methods. In this study, a more reliable method of stable isotopes of δ 18O and δ 2H based on the Rayleigh distillation equation and mass conservation was used to estimate the evaporation and recharge of the rivers in the lower reaches of the Yellow River, North China Plain. Comprehensive sampling campaigns including 30 surface water samples from 10 rivers, 33 groundwater samples from domestic and observation wells, and two Yellow River water samples were conducted. The results showed that the evaporation proportion of the rivers based on δ 18O and δ 2H both averaged 14.4%. The evaporation proportions in each river did not completely follow a linear increasing trend along the flow path. This phenomenon could be mainly explained by the different proportions of recharge from groundwater and Yellow River water. With closer to the Yellow river, evaporation of the rivers decreased while the recharge by the Yellow River increased. Regression equations based on δ 18O, δ 2H, and their average revealed that the evaporation proportion respectively increased by 1.02, 0.79, and 0.90% with the increase in the distance to the Yellow River per 10 km. On the contrary, the recharge proportion decreased by 7.68, 5.51, and 6.59%, respectively. In addition, using δ 18O rather than δ 2H was more reliable in studying the spatial influence of the Yellow River on evaporation and recharge. Sensitivity analysis showed that the evaporation model was most sensitive to isotopic composition, rather than to air temperature or relative humidity. The results of this study provide insights into the determination of river hydrological processes and the management of water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brooks JR, Gibson JJ, Birks SJ, Weber MH, Rodecap KD, Stoddard JL (2014) Stable isotope estimates of evaporation: inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments. Limnol Oceanogr 59:2150–2165. doi:10.4319/lo.2014.59.6.2150

    Article  Google Scholar 

  • Chen JS, He DW, Cui SB (2003) The response of river water quality and quantity to the development of irrigated agriculture in the last 4 decades in the Yellow River Basin, China. Water Resour Res. doi:10.1029/2001wr001234

    Google Scholar 

  • Clack I, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press, New York

    Google Scholar 

  • Craig H (1961) Isotpic variations in meteoric waters. Science 133:1702–1703. doi:10.1126/science.133.3465.1702

    Article  Google Scholar 

  • Daessle LW, Van Geldern R, Orozco-Duran A, Barth JAC (2016) The 2014 water release into the arid Colorado River delta and associated water losses by evaporation. Sci Total Environ 542:586–590. doi:10.1016/j.scitotenv.2015.09.157

    Article  Google Scholar 

  • Daniel CC (2015) River evaporation, condensation and heat fluxes within a first order tributary of Catamaran Brook (New Brunswick, Canada). Hydrol Process 30(12):1872–1883. doi:10.1002/hyp.10744

    Google Scholar 

  • Dansgaard W (1954) The O18 abundance in fresh water. Geochim Cosmochim Acta 6:241–260. doi:10.1016/0016-7037(54)90003-4

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Dogramaci S, Skrzypek G, Dodson W, Grierson PF (2012) Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical northwest Australia. J Hydrol 475:281–293. doi:10.1016/j.jhydrol.2012.10.004

    Article  Google Scholar 

  • Dogramaci S, Firmani G, Hedley P, Skrzypek G, Grierson PF (2015) Evaluating recharge to an ephemeral dryland stream using a hydraulic model and water, chloride and isotope mass balance. J Hydrol 521:520–532. doi:10.1016/j.jhydrol.2014.12.017

    Article  Google Scholar 

  • Elmi G, Sacchi E, Zuppi GM, Cerasuolo M, Allais E (2013) Isotopic estimation of the evapo-transpiration flux in a plain agricultural region (Po plain, Northern Italy). Appl Geochem 34:53–64. doi:10.1016/j.apgeochem.2012.12.010

    Article  Google Scholar 

  • Ershadi A, McCabe MF, Evans JP, Chaney NW, Wood EF (2014) Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agric For Meteorol 187:46–61. doi:10.1016/j.agrformet.2013.11.008

    Article  Google Scholar 

  • Gaj M, Beyer M, Koeniger P, Wanke H, Hamutoko J, Himmelsbach T (2015) In-situ unsaturated zone stable water isotope (2H and 18O) measurements in semi-arid environments using tunable off-axis integrated cavity output spectroscopy. Hydrol Earth Syst Sci Discuss 12:6115–6149. doi:10.5194/hessd-12-6115-2015

    Article  Google Scholar 

  • Gat J (2010) Stable isotopes of fresh and salin lakes. Isotope hydrology: a study of the water cycle. Imperial College Press, London

    Book  Google Scholar 

  • Gibson JJ, Edwards TWD (2002) Regional water balance trends and evaporation-transpiration partitioning from a stable isotope survey of lakes in northern Canada. Glob Biogeochem Cycles 16:1026. doi:10.1029/2001gb001839

    Article  Google Scholar 

  • Gibson JJ, Edwards TWD, Bursey GG, Prowse TD (1993) Estimating evaporation using stable isotopes: quantitative results and sensitivity analysis for two catchments in northern Canada. Nord Hydrol 24:79–94

    Google Scholar 

  • Gibson JJ et al (2005) Progress in isotope tracer hydrology in Canada. Hydrol Process 19:303–327. doi:10.1002/hyp.5766

    Article  Google Scholar 

  • Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes J-Ch (eds) Handbook of environmental isotope geochemistry. The terrestrial environment. Elsevier, Amsterdam

    Google Scholar 

  • Henderson AK, Shuman BN (2010) Differing controls on river- and lake-water hydrogen and oxygen isotopic values in the western United States. Hydrol Process 24:3894–3906. doi:10.1002/hyp.7824

    Article  Google Scholar 

  • Hostetler SW, Bartlein PJ (1990) Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur lake, Oregon. Water Resour Res 26:2603–2612. doi:10.1029/WR026i010p02603

    Google Scholar 

  • Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013) Terrestrial water fluxes dominated by transpiration. Nature 496:347–351. doi:10.1038/nature11983

    Article  Google Scholar 

  • Jonsson CE, Leng MJ, Rosqvist GC, Seibert J, Arrowsmith C (2009) Stable oxygen and hydrogen isotopes in sub-Arctic lake waters from northern Sweden. J Hydrol 376:143–151. doi:10.1016/j.jhydrol.2009.07.021

    Article  Google Scholar 

  • Krabbenhoft DP, Bowser CJ, Anderson MP, Valley JW (1990) Estimating groundwater exchange with lakes. 1. The stable isotope mass balance method. Water Resour Res 26:2445–2453. doi:10.1029/90wr01135

    Google Scholar 

  • Li F, Pan G, Tang C, Zhang Q, Yu J (2008) Recharge source and hydrogeochemical evolution of shallow groundwater in a complex alluvial fan system, southwest of North China Plain. Environ Geol 55:1109–1122. doi:10.1007/s00254-007-1059-1

    Article  Google Scholar 

  • Li Q, Nakatsuka T, Kawamura K, Liu Y, Song HM (2011) Hydroclimate variability in the North China Plain and its link with EI Niñ-Southern Oscillation since 1784 A.D.: Insights from tree-ring cellulose δ 18O. J Geophys Res. doi:10.1029/2011JD015987

    Google Scholar 

  • Liu T (2007) Study on the present condition and variety regulation of binzhou water environment. Thesis, Hehai University

  • Liu Y, Zhang XJ, Song HM, Cai QF, Li Q, Zhao BY, Liu H, Mei RC (2016) Tree-ring-width-based PDSI reconstruction for central Inner Mongolia, China over the past 333 years. Clim Dyn. doi:10.1007/s00382-016-3115-6

    Google Scholar 

  • Long D, Singh VP (2012) A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery. Remote Sens Environ 121:370–388. doi:10.1016/j.rse.2012.02.015

    Article  Google Scholar 

  • Maheu A, Caissie D, St-Hilaire A, El-Jabi N (2014) River evaporation and corresponding heat fluxes in forested catchments. Hydrol Process 28:5725–5738. doi:10.1002/hyp.10071

    Article  Google Scholar 

  • Majoube M (1971) Fraction in O-18 between ice and water vapor. J Chim Phys Phys Chim Biol 68:625

    Google Scholar 

  • McCallum AM, Andersen MS, Acworth RI (2014) A new method for estimating recharge to unconfined aquifers using differential river gauging. Groundwater 52:291–297. doi:10.1111/gwat.12046

    Article  Google Scholar 

  • Meredith KT, Hollins SE, Hughes CE, Cendón DI, Hankin S, Stone DJM (2009) Temporal variation in stable isotopes (18O and 2H) and major ion concentrations within the Darling River between Bourke and Wilcannia due to variable flows, saline groundwater influx and evaporation. J Hydrol 378:313–324. doi:10.1016/j.jhydrol.2009.09.036

    Article  Google Scholar 

  • Ministry of Environmental Protection of the People’s Republic of China (2009) Water quality-Technical regulation on the design of sampling programmes (HJ 495-2009). Standards of the People’s Republic of China on Environmental Protection

  • Paces JB, Wurster FC (2014) Natural uranium and strontium isotope tracers of water sources and surface water-groundwater interactions in arid wetlands—Pahranagat Valley, Nevada, USA. J Hydrol 517:213–225. doi:10.1016/j.jhydrol.2014.05.011

    Article  Google Scholar 

  • Palmer PC, Gannett MW, Hinkle SR (2007) Isotopic characterization of three groundwater recharge sources and inferences for selected aquifers in the upper Klamath Basin of Oregon and California, USA. J Hydrol 336:17–29. doi:10.1016/j.jhydrol.2006.12.008

    Article  Google Scholar 

  • Qian H, Li M, Ji Y, Yang B, Zhao Z (2007) Changes of δ18O and δD along the Dousitu River, Inner Mongolia, China, and their evidence of river water evaporation. Aquat Geochem 13:127–142

    Article  Google Scholar 

  • Qian H, Wu J, Zhou Y, Li P (2014) Stable oxygen and hydrogen isotopes as indicators of lake water recharge and evaporation in the lakes of the Yinchuan Plain. Hydrol Process 28:3554–3562. doi:10.1002/hyp.9915

    Article  Google Scholar 

  • Richey JE, Hedges JI, Devol AH, Quay PD, Victoria R, Martinelli L, Forsberg BR (1990) Biogeochemistry of carbon in the Amazon river. Limnol Oceanogr 35:352–371

    Article  Google Scholar 

  • Shen Y, Zhang Y, Scanlon BR, Lei H, Yang D, Yang F (2013) Energy/water budgets and productivity of the typical croplands irrigated with groundwater and surface water in the North China Plain. Agric For Meteorol 181:133–142. doi:10.1016/j.agrformet.2013.07.013

    Article  Google Scholar 

  • Simpson HJ, Herczeg AL (1991) Stable isotopes as an indicator of evaporation in the river Murray, Australia. Water Resour Res 27:1925–1935. doi:10.1029/91wr00941

    Article  Google Scholar 

  • Singh VP, Xu CY (1997) Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation. Hydrol Process 11:311–323

    Article  Google Scholar 

  • Skrzypek G, Mydlowski A, Dogramaci S, Hedley P, Gibson JJ, Grierson PF (2015) Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. J Hydrol 523:781–789. doi:10.1016/j.jhydrol.2015.02.010

    Article  Google Scholar 

  • Steinbruch F, Weise SM (2014) Analysis of water stable isotopes fingerprinting to inform conservation management: lake Urema Wetland System, Mozambique. Phys Chem Earth 72–75:13–23. doi:10.1016/j.pce.2014.09.007

    Article  Google Scholar 

  • Sun Z, Wang H (2009) Influences and Countermeasure to ecological environment Dezhou groundwater mining creates changes and countermeasure. Groundwater 31(30–32):79

    Google Scholar 

  • Telmer K, Veizer J (2000) Isotopic constraints on the transpiration, evaporation, energy, and gross primary production budgets of a large boreal watershed: Ottawa River basin, Canada. Glob Biogeochem Cycles 14:149–165. doi:10.1029/1999gb900078

    Article  Google Scholar 

  • Tweed S, Leblanc M, Cartwright I, Favreau G, Leduc C (2011) Arid zone groundwater recharge and salinisation processes; an example from the Lake Eyre Basin, Australia. J Hydrol 408:257–275. doi:10.1016/j.jhydrol.2011.08.008

    Article  Google Scholar 

  • Van den Akker J, Simmons CT, Hutson JL (2011) Use of stable isotopes deuterium and oxygen-18 to derive evaporation from flood irrigation on the basis of pan evaporation techniques. J Irrig Drain Eng Asce 137:765–778. doi:10.1061/(asce)ir.1943-4774.0000361

    Article  Google Scholar 

  • Wang L et al (2012) Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools. Environ Pollut 165:241–249. doi:10.1016/j.envpol.2011.10.005

    Article  Google Scholar 

  • Wang S, Tang C, Song X, Wang Q, Zhang Y, Yuan R (2014) The impacts of a linear wastewater reservoir on groundwater recharge and geochemical evolution in a semi-arid area of the Lake Baiyangdian watershed, North China Plain. Sci Total Environ 482:325–335. doi:10.1016/j.scitotenv.2014.02.130

    Article  Google Scholar 

  • Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Groundwater 33:458–468. doi:10.1111/j.1745-6584.1995.tb00302.x

    Article  Google Scholar 

  • Wu X, Li F, Guo J, Liu Q, Song S, Zhao G (2011) Security evaluation of nitrate and ammonium nitrogen in main river reaches of irrigation districts in downstream of Yellow River. J Water Resour Water Eng 22:114–117

    Google Scholar 

  • Xu CY, Singh VP (1998) Dependence of evaporation on meteorological variables at different time-scales and intercomparison of estimation methods. Hydrol Process 12:429–442. doi:10.1002/(SICI)1099-1085(19980315)12:3<429:AID-HYP581>3.0.CO;2-A

    Article  Google Scholar 

  • Xu C, Gong L, Jiang T, Chen D, Singh VP (2006) Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J Hydrol 327:81–93. doi:10.1016/j.jhydrol.2005.11.029

    Article  Google Scholar 

  • Yakir D, Sternberg LDL (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123:297–311. doi:10.1007/s004420051016

    Article  Google Scholar 

  • Yang LZ, Zhang GH, Liu ZY, Liu CH (2009) Isotope age of groundwater in Lubei Plain and evaluation of its renewable capacity. Acta Geosci Sin 30:235–242. doi:10.3975/cagsb.2014.02.04

    Google Scholar 

  • Zhang Y, Shen Y, Sun H, Gates JB (2011) Evapotranspiration and its partitioning in an irrigated winter wheat field: a combined isotopic and micrometeorologic approach. J Hydrol 408:203–211. doi:10.1016/j.jhydrol.2011.07.036

    Article  Google Scholar 

  • Zhang Y, Li F, Zhang Q, Li J, Liu Q (2014) Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes. Sci Total Environ 490:213–222. doi:10.1016/j.scitotenv.2014.05.004

    Article  Google Scholar 

Download references

Acknowledgements

We are greatly thankful to Jing Li, Chun Tu, Qiang Liu, Yan Zhang, Shuai Song for their help with field and laboratory assistance. This study was supported by the National Natural Science Foundation of China No. 41271047, the National Key Research and Development Program of China (2016YFD0800301), and the National Key Technology R&D Program of China (2012BAD05B0204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, F. Isotope evidence for quantifying river evaporation and recharge processes in the lower reaches of the Yellow River. Environ Earth Sci 76, 123 (2017). https://doi.org/10.1007/s12665-017-6442-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6442-y

Keywords

Navigation