Skip to main content

Advertisement

Log in

Chemical and isotopic characteristics of groundwater-dominated Radovna River (NW Slovenia)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In order to investigate stream water, spring waters and water from a borehole facies, weathering processes, residence times and average recharge altitudes in the Radovna River valley were analysed for their concentrations of dissolved Ca2+, Mg2+, K+, Na+, HCO3 , Cl, NO3 , SO4 2− and for the isotope compositions of hydrogen, oxygen and dissolved inorganic carbon (DIC). All water samples show a Ca2+–HCO3 water facies with low contents of K+, Na+, Cl, NO3 and SO4 2−. Water–rock interaction and carbonate weathering are the significant contributors to water geochemistry. Analysis of the water chemistry indicates that waters drain a monolithological terrain and non-anthropogenically influenced watershed. The δ 2H and δ 18O values are seasonally dependent on the snowmelt, precipitation and evaporation. The average recharge altitudes for all sampling locations are between 1120 and 2130 m. The average residence time for the stream water is 2.4 years and for karst springs 1.2 years. The δ 13CDIC values in all samples are influenced by dissolution of carbonates, degradation of organic matter and by equilibrium with atmospheric CO2. All geochemical and isotope analyses show changes in stream water in the downstream direction and are highly dependent on the inflow of karstic spring. Based on hydrogeological mapping, geochemical and stable isotope results, a conceptual hydrogeological model of the Radovna system, in which karstic and alluvial aquifers are in contact, was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ARSO (2016a) Archive of meteorological data. Ministry of the environment and spatial planning, Slovenian environment agency [http://www.arso.gov.si/vreme/]. Accessed 10 Feb 2016

  • ARSO (2016b) Hydrological data—archive hydrological data. Ministry of the environment and spatial planning, Slovenian environment agency [http://vode.arso.gov.si/hidarhiv/]. http://www.arso.gov.si/vode/podatki/. Accessed 10 Feb 2016

  • Brenčič M (1998) Some results of stable isotope investigations in the Slovenian part of Stol area (W Karavanke). RMZ—Mater Geoenviron 45:17–19

    Google Scholar 

  • Bullen TD, Kendall C (1998) Chapter 18—tracing of weathering reactions and water flowpaths: multi-isotope approach. In: McDonnell CKJ (ed) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 611–646. doi:10.1016/B978-0-444-81546-0.50025-2

    Chapter  Google Scholar 

  • Cable J, Ogle K, Williams D (2011) Contribution of glacier meltwater to streamflow in the Wind River range, Wyoming, inferred via a Bayesian mixing model applied to isotopic measurements. Hydrol Process 25:2228–2236. doi:10.1002/hyp.7982

    Article  Google Scholar 

  • Cappa CD, Hendricks MB, DePaolo DJ, Cohen RC (2003) Isotopic fractionation of water during evaporation. J Geophys Res: atmos 108:4525. doi:10.1029/2003jd003597

    Article  Google Scholar 

  • Clark I (1997) Environmental isotopes in hydrogeology. Lewis Publisher, Boca Ranton/New York

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Deines P (1980) Chapter 9—the isotopic composition of reduces organic carbon. In: Fontes PFC (ed) The terrestrial environment, A. Elsevier, Amsterdam, pp 329–406. doi:10.1016/B978-0-444-41780-0.50015-8

    Chapter  Google Scholar 

  • Ferjan Stanič T, Brenčič M, Zupančič N (2013) Heavy metal concentrations in soil in the vicinity of former ironworks in Spodnja Radovna. Slovenia Geologija 56(2):229–241. doi:10.5474/geologija.2013.015

    Article  Google Scholar 

  • Frantar P, Kobold M, Pavlič U, Petan S, Pogačnik N, Polajnar J, Robič M, Strojan I, Sušnik M, Trček R, Trišić N, Ulaga F (2012) The 2009 hydrological yearbook of Slovenia. Ministry of Agriculture and Environment. Slovenian Environment Agency, Ljubljana

    Google Scholar 

  • Gat J, Carmi I (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea Area. J Geophys Res. doi:10.1029/JC075i015p03039

    Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  Google Scholar 

  • Glynn P, Plummer LN (2005) Geochemistry and the understanding of ground-water systems. Hydrogeol J 13:263–287. doi:10.1007/s10040-004-0429-y

    Article  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. US Geological Survey, Reston

    Google Scholar 

  • Kanduč T, Szramek K, Ogrinc N, Walter LM (2007) Origin and cycling of riverine inorganic carbon in the Sava River watershed (Slovenia) inferred from major solutes and stable carbon isotopes. Biogeochemistry 86:137–154

    Article  Google Scholar 

  • Kanduč T, Mori N, Kocman D, Stibilj V, Grassa F (2012) Hydrogeochemistry of Alpine springs from North Slovenia: insights from stable isotopes. Chemical Geology 300–301:40–54. doi:10.1016/j.chemgeo.2012.01.012

    Article  Google Scholar 

  • Kastelec D (1999) Use of universal kriging for objective spatial interpolation of average yearly precipitation in Slovenia. Res Rep Biotech Fac Univ Ljubljani Agric 73:301–314 (in Slovenian, with English abstract)

    Google Scholar 

  • Kendall C, Doctor DH (2003) 5.11—stable isotope applications in hydrologic studies. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry. Pergamon, Oxford, pp 319–364. doi:10.1016/B0-08-043751-6/05081-7

    Chapter  Google Scholar 

  • Langmuir D (1971) The geochemistry of some carbonate ground waters in central Pennsylvania. Geochim Cosmochim Acta 35:1023–1045. doi:10.1016/0016-7037(71)90019-6

    Article  Google Scholar 

  • Li SY, Zhang QF (2009) Geochemistry of the upper Han River basin, China 2: seasonal variations in major ion compositions and contribution of precipitation chemistry to the dissolved load. J Hazard Mater 170:605–611. doi:10.1016/j.jhazmat.2009.05.022

    Article  Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

    Article  Google Scholar 

  • Meybeck M (1996) River water quality, global ranges time and space variabilities. Verh Int Ver Limnol 26:81–96

    Google Scholar 

  • Mohammed N, Celle-Jeanton H, Huneau F, Le Coustumer P, Lavastre V, Bertrand G, Charrier G, Clauzet ML (2014) Isotopic and geochemical identification of main groundwater supply sources to an alluvial aquifer, the Allier River valley (France). J Hydrol 508:181–196. doi:10.1016/j.jhydrol.2013.10.051

    Article  Google Scholar 

  • Moral F, Cruz-Sanjulián JJ, Olías M (2008) Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain). J Hydrol 360:281–296. doi:10.1016/j.jhydrol.2008.07.012

    Article  Google Scholar 

  • Muri G (2013) Atmospheric deposition chemistry in a subalpine area of the Julian Alps, North-West Slovenia. J Limnol 72:291–300. doi:10.4081/jlimnol.2013.e23

    Article  Google Scholar 

  • Nadbath M (2012) Meteorološka postaja Zgornja Radovna Naše okolje. Bilten Agencije RS za okolje XIX:1–5

    Google Scholar 

  • Ogrinc N, Kanduč T, Vaupotič J (2006) Isotopic characteristics of the Sava River basin in Slovenia. In: Povinec P, Sanchez-Cabeza JA (eds) Radioactivity in the environment, vol 8. Elsevier, Amsterdam, pp 317–325. doi:10.1016/s1569-4860(05)08025-3

    Google Scholar 

  • Ogrinc N, Kanduč T, Stichler W, Vreča P (2008) Spatial and seasonal variations in δ 18O and δD values in the River Sava in Slovenia. J Hydrol 359:303–312. doi:10.1016/j.jhydrol.2008.07.010

    Article  Google Scholar 

  • Porowska D (2015) Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes. Waste Manag 39:216–225. doi:10.1016/j.wasman.2015.01.044

    Article  Google Scholar 

  • Pu T, He Y, Zhang T, Wu J, Zhu G, Chang L (2013) Isotopic and geochemical evolution of ground and river waters in a karst dominated geological setting: a case study from Lijiang basin, South-Asia monsoon region. Appl Geochem 33:199–212. doi:10.1016/j.apgeochem.2013.02.013

    Article  Google Scholar 

  • Rodgers P, Soulsby C, Waldron S, Tetzlaff D (2005) Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale. Hydrol Earth Syst Sci 9:139–155. doi:10.5194/hess-9-139-2005

    Article  Google Scholar 

  • Sear DA, Armitage PD, Dawson FH (1999) Groundwater dominated rivers. Hydrol Process 13:255–276. doi:10.1002/(sici)1099-1085(19990228)

    Article  Google Scholar 

  • Szramek K, Walter LM (2004) Impact of carbonate precipitation on riverine inorganic carbon mass transport from a mid-continent, forested watershed. Aquat Geochem 10(99):137

    Google Scholar 

  • Szramek K, McIntosh JC, Williams EL, Kanduc T, Ogrinc N, Walter LM (2007) Relative weathering intensity of calcite versus dolomite in carbonate-bearing temperate zone watersheds: carbonate geochemistry and fluxes from catchments within the St. Lawrence and Danube river basins. Geochem Geophys Geosyst 8:1–26. doi:10.1029/2006gc001337

    Article  Google Scholar 

  • Torkar A, Brenčič M (2015) Spatio-temporal distribution of discharges in the Radovna River valley at low water conditions. Geologija 58(1):47–56. doi:10.5474/geologija.2015.003

    Article  Google Scholar 

  • Vitvar T, Balderer W (1997) Estimation of mean water residence times and runoff generation by 180 measurements in a Pre-Alpine catchment (Rietholzbach, Eastern Switzerland). Appl Geochem 12:787–796. doi:10.1016/s0883-2927(97)00045-0

    Article  Google Scholar 

  • Vreča P (2015) Isotopic composition of precipitation in North-West Slovenia for the period 2010–2013. Paper presented at the international symposium on isotope hydrology: revisiting foundations and exploring frontiers, Vienna, Austria, 11–15 May 2015

  • Vreča P, Muri G (2006) Changes in accumulation of organic matter and stable carbon and nitrogen isotopes in sediments of two Slovenian mountain lakes (Lake Ledvica and Lake Planina), induced by eutrophication changes. Limnol Oceanogr 51:781–790. doi:10.4319/lo.2006.51.1_part_2.0781

    Article  Google Scholar 

  • Vreča P, Muri G (2010) Sediment organic matter in mountain lakes of north-western Slovenia and its stable isotopic signatures: records of natural and anthropogenic impacts. Hydrobiologia 648:35–49. doi:10.1007/s10750-010-0148-4

    Article  Google Scholar 

  • Vreča P, Bronić IK, Horvatinčić N, Barešić J (2006) Isotopic characteristics of precipitation in Slovenia and Croatia: comparison of continental and maritime stations. J Hydrol 330:457–469. doi:10.1016/j.jhydrol.2006.04.005

    Article  Google Scholar 

  • Vreča P, Brenčič M, Leis A (2007) Comparison of monthly and daily isotopic composition of precipitation in the coastal area of Slovenia. Isot Environ Health Stud 43:307–321. doi:10.1080/10256010701702739

    Article  Google Scholar 

  • Vreča P, Bronić IK, Leis A, Brenčič M (2008) Isotopic composition of precipitation in Ljubljana (Slovenia). Geologija 51:169–180. doi:10.5474/geologija.2008.018

    Article  Google Scholar 

  • Vreča P, Brenčič M, Sinjur I, Vertačnik G, Volk Bahun M, Ortar J, Torkar A, Stibilj V, Pavšek M (2013) Izotopska sestava padavin in snega na območju Julijskih Alp in Karavank. Paper presented at the 18 strokovno srečanje Slovenskega združenja za geodezijo in geofiziko, Ljubljana, 29 Jan 2013

  • Vreča P, Bronić IK, Leis A, Demšar M (2014) Isotopic composition of precipitation at the station Ljubljana (Reaktor), Slovenia—period 2007–2010. Geologija 57(2):217–230. doi:10.5474/geologija.2014.019

    Article  Google Scholar 

  • White WB (2010) Chapter 6—spring water geochemistry. In: Kresic N, Stevanovic Z (eds) Groundwater hydrology of springs, vol 8. Butterworth-Heinemann, Boston, pp 231–268. doi:10.1016/B978-1-85617-502-9.00006-2

    Chapter  Google Scholar 

  • Xu ZF, Ji JP, Shi C (2011) Water geochemistry of the Chaohu Lake Basin rivers, China: chemical weathering and anthropogenic inputs. Appl Geochem 26:S379–S383. doi:10.1016/j.apgeochem.2011.03.066

    Article  Google Scholar 

  • Zhang L, Song X, Xia J, Yuan R, Zhang Y, Liu X, Han D (2011) Major element chemistry of the Huai River basin. China Appl Geochem 26:293–300. doi:10.1016/j.apgeochem.2010.12.002

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge Zmago Bole, technician at the Geological Survey of Slovenia, who actively assisted in all the sampling campaigns. The paper was prepared under the PhD Grant 1000-10-310073 at the Faculty of Natural Sciences and Engineering and research programmes: “Groundwater and geochemistry” (P1-0020) of the Geological Survey of Slovenia and “Cycling of substances in the environment, mass balances, modelling of environmental processes and risk assessment” (P1-0143) of the Jožef Stefan Institute, all supported financially by the Slovenian Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Torkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torkar, A., Brenčič, M. & Vreča, P. Chemical and isotopic characteristics of groundwater-dominated Radovna River (NW Slovenia). Environ Earth Sci 75, 1296 (2016). https://doi.org/10.1007/s12665-016-6104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6104-5

Keywords

Navigation