Skip to main content
Log in

Permeability distribution in the Lahendong geothermal field: A blind fault captured by thermal–hydraulic simulation

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Subsurface fluid flow of reservoirs in active tectonic regions is mainly controlled by permeability of fault zones. Therefore, the characterization of fault zones is an important step toward performance assessment of a reservoir. The fluid flow is controlled also by pressure and temperature conditions. In this context, we simulated pressure and temperature fields to elaborate on the influence of permeability on subsurface fluid flow in the Lahendong geothermal reservoir. Thermal–hydraulic simulation is performed using a finite element approach. Adjusting the permeability through 370 different cases, modeling results converged to the observed data within a misfit range of 0–7 %. The best fitting models identified a deep-seated fault that has previously not been traced at the surface. Simulated temperature distribution suggests a prominent convective heat flow, driven by an upward migrating and SW–NE oriented fluid flow. This hydraulic gradient causes a pressure drop along the reservoir. High-pressure patterns are used to constrain recharge areas, in addition to infiltration measurements. Discharge flow occurs from SW to NE migrating also upward toward the hot springs. In that frame, thermal–hydraulic simulations identified previously unresolved subsurface faults, which now allow a better understanding of the subsurface permeability and its influence on fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brehme M, Regenspurg S, Zimmermann G (2011) Hydraulic-hydrochemical modelling of a geothermal reservoir in Indonesia. Mineral Mag 75:577

    Google Scholar 

  • Brehme M, Haase C, Regenspurg S, Moeck I, Deon F, Wiegand BA, Kamah Y, Zimmermann G, Sauter M (2013) Hydrochemical patterns in a structurally controlled geothermal system. Miner Mag 77:767. doi:10.1180/minmag.2013.077.5.2

    Google Scholar 

  • Brehme M, Moeck I, Kamah Y, Zimmermann G, Sauter M (2014) A hydrotectonic model of a geothermal reservoir—a study in Lahendong, Indonesia. Geothermics 51:228–239. doi:10.1016/j.geothermics.2014.01.010

    Article  Google Scholar 

  • Brehme M, Deon F, Haase C, Wiegand B, Kamah Y, Sauter M, Regenspurg S (2016) Geochemical properties controlled by fault permeability in a geothermal reservoir (Lahendong, Indonesia). Grundwasser 21:29–41. doi:10.1007/s00767--015--0313--9

    Article  Google Scholar 

  • Cherubini Y, Cacace M, Blöcher G, Scheck-Wenderoth M (2013) Impact of single inclined faults on the fluid flow and heat transport: results from 3-D finite element simulations. Environ Earth Sci 70:3603–3618. doi:10.1007/s12665-012-2212-z

    Article  Google Scholar 

  • Delisle G, Beiersdorf H, Neben S, Steinmann D (1998) The geothermal field of the North Sulawesi accretionary wedge and a model on BSR migration in unstable depositional environments. Geol Soc Lond Spec Publ 137:267–274. doi:10.1144/GSL.SP.1998.137.01.21

    Article  Google Scholar 

  • DHI-Wasy (2009) FEFLOW white papers, vol 1, 368 pp

  • Diersch H-JG (2014) Finite Element modeling of flow, mass and heat transport in porous and fractured media. Springer, Berlin, p 996

    Google Scholar 

  • DWD, Deutscher Wetterdienst (2007) Offenbach/Main. http://www.dwd.de/. Accessed June 2012

  • Haneberg WC (1995) Steady state groundwater flow across idealized faults. Water Resour Res 31:1815–1820

    Article  Google Scholar 

  • Hooper ECD (1991) Fluid migration along growth faults in compacting sediments. J Pet Geol 14:161–180. doi:10.1111/j.1747-5457.1991.tb00360.x

    Article  Google Scholar 

  • Hölting B, Coldewey W (2005) Hydrogeologie: Einführung in die allgemeine und angewandte Hydrogeologie. Springer, Berlin

    Google Scholar 

  • Johnson-Maynard J, Anderson M, Green S, Graham R (1994) Physical and hydraulic properties of weathered granitic rock in southern California. Soil Sci 158:375–380

    Article  Google Scholar 

  • Kaya E, O’Sullivan MJ, Hochstein MP (2014) A three dimensional numerical model of the Waiotapu, Waikite and Reporoa geothermal areas, New Zealand. J Volcanol Geotherm Res 283:127–142. doi:10.1016/j.jvolgeores.2014.07.008

    Article  Google Scholar 

  • Klavetter E, Peters R (1987) An evaluation of the use of mercury porosimetry in calculating hydrologic properties of tuffs from Yucca Mountain, Nevada, Nevada Nuclear Waste Storage Investigations Project Report. Project-Report, Nevada Nuclear Waste Storage Investigations Project

  • Koestono H, Siahaan EE, Silaban M, Franzson H (2010) Geothermal model of the Lahendong geothermal field, Indonesia. In: Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010

  • Magri F, Akar T, Gemici U, Pekdeger A (2011) Numerical investigations of fault-induced seawater circulation in the Seferihisar–Balçova geothermal system, western Turkey. Hydrogeol J 20:103–118. doi:10.1007/s10040-011-0797-z

    Article  Google Scholar 

  • McGuinness M, White S, Young R, Ishizaki H, Ikeuchi K, Yoshida Y (1995) A model of the Kakkonda geothermal reservoir. Geothermics 24:1–48. doi:10.1016/0375-6505(94)00020-D

    Article  Google Scholar 

  • Mercer JW, Faust CR (1979) Geothermal reservoir simulation: 3. Application of liquid-and vapor-dominated hydrothermal modeling techniques to Wairakei, New Zealand. Water Resour Res 15:653–671. doi:10.1029/WR015i003p00653

    Article  Google Scholar 

  • Milsch H, Priegnitz M, Blöcher G (2011) Permeability of gypsum samples dehydrated in air. Geophys Res Lett 38:6. doi:10.1029/2011GL048797

    Article  Google Scholar 

  • Moeck IS (2014) Catalog of geothermal play types based on geologic controls. Renew Sustain Energy Rev 37:867–882. doi:10.1016/j.rser.2014.05.032

    Article  Google Scholar 

  • Nagao T, Uyeda S (1995) Heat-flow distribution in Southeast Asia with consideration of volcanic heat. Tectonophysics 251:153–159

    Article  Google Scholar 

  • Neben S, Hinz K, Beiersdorf H (1998) Reflection characteristics, depth and geographical distribution of bottom simulating reflectors within the accretionary wedge of Sulawesi. Geol Soc Lond Spec Publ 137:255–265. doi:10.1144/GSL.SP.1998.137.01.20

    Article  Google Scholar 

  • O’Sullivan MJ, Pruess K, Lippmann MJ (2001) State of the art of geothermal reservoir simulation. Geothermics 30:395–429. doi:10.1016/S0375-6505(01)00005-0

    Article  Google Scholar 

  • Ondrak R, Wenderoth F, Scheck M, Bayer U (1998) Integrated geothermal modeling on different scales in the Northeast German basin. Geol Rundschau 87:32–42. doi:10.1007/s005310050187

    Article  Google Scholar 

  • Popov Y, Pribnow D, Sass J (1999) Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics 28:253–276

    Article  Google Scholar 

  • Schön JH (2004) Physical properties of rocks. Elsevier Ltd, Amsterdam

    Google Scholar 

  • Saghravani S, Yusoff I, Mustapha S, Saghravani S (2013) Estimating groundwater recharge using empirical method: a case study in the tropical zone. Sains Malays 42:553–560

    Google Scholar 

  • Sutherland R, Toy VG, Townend J, Cox SC, Eccles JD, Faulkner DR, Prior DJ, Norris RJ, Mariani E, Boulton C, Carpenter BM, Menzies CD, Little TA, Hasting M, De Pascale GP, Langridge RM, Scott HR, Reid Lindroos Z, Fleming B, Kopf J (2012) Drilling reveals fluid control on architecture and rupture of the Alpine fault, New Zealand. Geology 40:1143–1146. doi:10.1130/G33614.1

    Article  Google Scholar 

  • Wiegand BA, Brehme M, Teuku F, Amran IA, Prasetio R, Kamah Y, Sauter M (2013) Geochemical and isotopic investigation of fluids from Lahendong geothermal field. Miner Mag 77:2491. doi:10.1180/minmag.2013.077.5.23

    Google Scholar 

  • Yani A (2006) Numerical modelling of the Lahendong geothermal system, Indonesia, Report from United Nations University

Download references

Acknowledgments

The authors acknowledge the continuous support within the team of the International Center for Geothermal Research under the direction of E. Huenges. Thanks to H. Milsch, B. Peters, and D. Otten for helping at the Gas-Permeameter. We thank A. Förster for giving access and introduction to the optical scanner for thermal conductivity measurements and S. Fuchs for assisting while interpretation of data. A special gratitude to F. Bulut, who carefully reviewed the manuscript, took care of linguistic issues, and supported the analysis with helpful discussions. Prof. M. Hochstein is greatly acknowledged for continuous fruitful discussions during the study. The support of the team of Pertamina Geothermal Energy in Jakarta as well as in Lahendong including the access to data, and the field is highly appreciated. The authors thank PGE for the permission to publish this paper. The German Federal Ministry for Education and Research (BMBF) is funding this German project “Sustainability concepts for exploitation of geothermal reservoirs in Indonesia—capacity building and methodologies for site deployment” under Grant 03G0753A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Brehme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brehme, M., Blöcher, G., Cacace, M. et al. Permeability distribution in the Lahendong geothermal field: A blind fault captured by thermal–hydraulic simulation. Environ Earth Sci 75, 1088 (2016). https://doi.org/10.1007/s12665-016-5878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5878-9

Keywords

Navigation