Skip to main content
Log in

Thermochemical effects on the smectite alteration of GMZ bentonite for deep geological repository

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Gaomiaozi (GMZ) bentonite has been recognized as the first choice for using as buffer/backfill material in deep geological repository for the disposal of high-level nuclear waste in China. High salinity and high pH of the pore solutions may cause changes in the mineralogical composition, and the swelling capacity of the bentonite results in affecting the long-term performance of the engineering barrier system. In the present work, a series of hydrothermal reactivity experiments were performed using batch reactors at 20, 35 and 80 °C for evaluating the chemical and mineralogical responses of GMZ bentonites. The results show that the dissolution of smectite releases Si and Al under the conditions of 1 M KOH at 35 and 80 °C and the released Si and Al may work as a cementing agent in GMZ bentonite. XRD pattern results show that alteration of the GMZ bentonite is expected to be insignificant for reaction with NaCl, KCl and NaOH solutions under low temperatures. However, it is obviously reacted with KOH solutions especially at 80 °C, during which cementitious material was produced leading to kaolinitization. When contacted with KOH solutions, the basal spacing (d001) of the main primary diffraction peaks (001) value of GMZ bentonite increases with increasing temperature. Salinity also can influence the smectite stability and accordingly loss of swelling capacity. This conclusion could be explained by the diffusing double-layer effects induced by salt solutions and ion exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alonso EE, Vaunat J, Gens A (1999) Modelling the mechanical behaviour of expansive clay. Eng Geol 54:173–183

    Article  Google Scholar 

  • Altaner SP, Ylagan RF (1997) Comparison of structural models of mixed-layer illite/smectite andreaction mechanisms of smectiteillitization. Clay Clay Miner 45(4):517–533

    Article  Google Scholar 

  • Amram K, Ganor J (2005) The combined effect of pH and temperature on the smectite dissolution rate under acidic conditions. Geochim Cosmochim Ac 69:2535–2546

    Article  Google Scholar 

  • Bauer A, Berger G (1998) Kaolinite and smectite dissolution rate in high molar KOH solutions at 35° and 80 °C. Appl Geo chem 13:905–916

    Google Scholar 

  • Bauer A, Velde B (1999) Smectite transformation in high molar KOH solutions. Clay Miner 34:259–273

    Article  Google Scholar 

  • Bauer A, Lanson B, Ferrage E, Emmerich K, Taubald H, Schild D, Velde B (2006) The fate of smectite in KOH solution. Am Mineral 91:1313–1322

    Article  Google Scholar 

  • Boles JR, Franks SG (1979) Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectitediagenesis on sandstone cementation. J Sediment Petrol 49:55–70

    Google Scholar 

  • Bouchet A, Cassagnabère A, Parneix JC (2004) Batch experiments: results on MX80. In Ecoclay II:Effect of cement on clay barrier performance phase II. Final report. (ANDRA) European contractFIKW-CT-2000-0028, (ed. N. Michau)

  • Cama J, Ganor J, Ayora C, Lasaga A (2000) Smectite dissolution kinetics at 80 °C and pH 8.8. Geochim Cosmochim Ac 64:2701–2717

    Article  Google Scholar 

  • Cuevas J (2004) Geochemical reactions between the FEBEX bentonite and Portland-type cement porewater. InEcoclay II: Effect of cement on clay barrier performance phase II. Final report. (ANDRA) Europeancontract FIKW-CT-2000-0028, (ed. N. Michau)

  • de la Villa Cuevas RVJ, Ramirez S, Leguey S (2001) Zeolite formation during the alkaline reaction ofbentonite. Eur J Miner 13:635–644

    Article  Google Scholar 

  • Dixon D, Chandler N, Graham J, Gray MN (2002) Two large-scale sealing tests conducted at Atomic Energy of Canada’s underground research laboratory: the buffer-container experiment and the isothermal test. Can Geo J 39(3):503–518

    Article  Google Scholar 

  • Fernández R, Ruiz AI, Cuevas J (2014) The role of smectite composition on the hyperalkaline alteration of bentonite. Appl Clay Sci 95:83–94

    Article  Google Scholar 

  • Furrer G, Zysset M, Schindler P (1993) Weathering kinetics of montmorillonite: Investigation in batch and mixed-flow reactors. In: Manning D, Hall P, Hughes C (eds) Geochemistry of clay-pore fluid interaction, vol 4. Chapman & Hall, Boca Raton, pp 243–262

    Google Scholar 

  • Gates WP, Bouazza A (2010) Bentonite transformations in strongly alkaline solutions. GeotextGeomembranes 28:219–225

    Google Scholar 

  • Gaucher EC, Blanc P (2006) Cement/clay interactions-a review: experiments, natural analogues, and modeling. Waste Manage 26:776–788

    Article  Google Scholar 

  • Glasser FP (2001) Mineralogical aspects of cement in radioactive waste disposal. Miner Mag 65:621–633

    Article  Google Scholar 

  • Guo YH, Yang TX, Liu SF (2001) Hydro-geological characteristics of Beishan preselected area, Gansu province for China’s high-level radioactive waste repository. Uranium Geol 17(3):184–189 (in Chinese)

    Google Scholar 

  • Guo YH, Su R, Ji RL, Wang HL, Liu SF, Zong ZH, Dong JN, Zhang M (2014) Synthetic hydrogeological study on Beishan preselected area for high-level radioactive waste repository in China. World Nucl Geo 31(4):587–593 (in Chinese)

    Google Scholar 

  • Herbert HJ, Kasbohm J, Moog HC, Henning KH (2003) Long term behaviour of the Wyoming bentonite MX-80 in high saline solutions. Appl Clay Sci 26:275–291

    Article  Google Scholar 

  • Herbert HJ, Kasbohm J, Sprenger H, Fernández AM, Reichelt C (2008) Swelling pressures of MX-80 bentonite in solutions of different ionic strength. PhysChem Earth 33:S327–S342

    Article  Google Scholar 

  • Hökmark H, Fälth B (2003) Thermal dimentioning of the deep repository. Technical Report, TR-03-09, SvenskKärnbränslehantering AB 2003

  • Hower J, Eslinger E, Hower M, Perry E (1976) Mechanism of burial metamorphism of argillaceous sediment. 1. Mineralogical and chemical evidence. GeolSoc Am Bull 87:725–737

    Article  Google Scholar 

  • Hurel C, Marmier N (2010) Sorption of europium on a MX-80 bentonite sample: experimental and modelling results. J Radioanal Nucl Ch 284(1):225–230

    Article  Google Scholar 

  • Inoue A (1995) Formation of clay minerals in hydrothermal environments. In: Velde B (ed) Origin and mineralogy of clays. Springer, Berlin, pp 268–329

    Chapter  Google Scholar 

  • Jennings S, Thompson GR (1986) Diagenesis of Plio-Pleistocene sediments of the Colorado River Delta, southern California. J Sed Pet 56:89–98

    Google Scholar 

  • Karnland O (2004) Laboratory experiments concerning compacted bentonite contacted to high pH solutions. In Ecoclay II: Effect of cement on clay barrier performance phase II. Final Report. (ANDRA) Europeancontract FIKW-CT-2000-0028, (ed. N. Michau)

  • Karnland O, Olsson S, Nilsson U, Sellin P (2007) Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions. Phys Chem Earth 32:275–286

    Article  Google Scholar 

  • Kaufhold S, Dohrmann R (2009) Stability of bentonites in salt solutions I: sodium chloride. Appl Clay Sci 45:171–177

    Article  Google Scholar 

  • Kaufhold S, Dohrmann R (2010) Stability of bentonites in salt solutionsII. Potassium chloride solution—Initial step of illitization? Appl Clay Sci 49:98–107

    Article  Google Scholar 

  • Kaufhold S, Dohrmann R (2011) Stability of bentonites in salt solutions III: calcium hydroxide. Appl Clay Sci 51:300–307

    Article  Google Scholar 

  • Laine H, Karttunen P (2010) Long-term stability of bentonite: a literature review. POSIVA, Working Report 2010-53, Finland

  • Lee JO, Kang IM, Cho WJ (2010) Smectite alteration and its influence on the barrier properties of smectite clay for a repository. Appl Clay Sci 47:99–104

    Article  Google Scholar 

  • Lehikoinen J (2009) Bentonite-cement interaction-preliminary results from model calculations. Posiva Working Report 2009-37. PosivaOy, Eurajoki, Finland

  • Liu YM, Xu GQ, Liu SF (2001) Study on compatibility and swelling property of buffer/backfill material for HLW repository. Uranium Geol 17(1):44–47 (in Chinese)

    Google Scholar 

  • Lloret A, Villar MV (2007) Advances on the knowledge of the therm-hydro-mechanical behaviour of heavily compacted “FEBEX” bentonite. Phys Chem Earth 32(8–14):701–715

    Article  Google Scholar 

  • Marcial D (2003) Comportementhydromécaniqueet microstructural des matériaux de barrierouvragée. PhD Thesis. Paris: ÉcoleNationale des PontsetChausées

  • Mitchell JK (1993) Fundamentals of Soil Behavior, 2nd edn. John Wiley, New York

    Google Scholar 

  • MosseR-Ruck R, Cathelineau M (2004) Experimental transformation of Na, Ca-smectite under basicconditions at 150°C. Appl Clay Sci 26:259–273

    Article  Google Scholar 

  • Muurinen A, Lehikoinen J (1999) Pore-water chemistry in compacted bentonite. Eng Geol 54:207–214

    Article  Google Scholar 

  • Nakashima Y (2004) Nuclear magnetic resonance properties of water-rich gels of Kunigel-V1 bentonite. J Nucl Sci Technol 41:981–992

    Article  Google Scholar 

  • Nakayama S, Sakamoto Y, Yamaguchi T, Akai M, Tanaka T, Sato T, Lida Y (2004) Dissolution of montmorillonite in compacted bentonite by highly alkaline aqueous solutions and diffusivity of hydroxide ions. Appl Clay Sci 27:53–65

    Article  Google Scholar 

  • Pastina B, Hellä P (2006) Expected evolution of a spent nuclear fuel repository at Olkiluoto. POSIVA Report 2006-05. PosivaOy, Olkiluoto, Finland

  • Plançon A, Drits VA (2000) Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- and three- component mixed-layer minerals. Clay Clay Miner 48:57–62

    Article  Google Scholar 

  • Pusch R (2001) The Buffer and Backfill Handbook Part 2: Materials and techniques. SKB Technical Report TR-02-12. Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm, Sweden

  • Pusch R, Karnland O, Sandén T (1996) Final report on physical testing programme concerning Spanish clays (saponites and bentonites). Enresa Technical Report, 02/96

  • Pusch R, Kasbohm J, Hoang MT (2007) Evolution of clay buffer under repository. Reprints of the contributions to the workshop on long-term performance of smectitic clays embedding canisters with highly radioactive waste, Lund, Sweden, pp. 1–12

  • Ramírez S, Cuevas J, Vigil de la Villa R, Leguey S (2002) Hydrothermal alteration of “LaSerrata” bentonite (Almeria, Spain) by alkaline solutions. Appl Clay Sci 21:257–269

    Article  Google Scholar 

  • Roaldset E, Wei H, Grimstad S (1998) Smectite to illite conversion by hydrouspyrolysis. Clay Miner 33:147–158

    Article  Google Scholar 

  • Sánchez L, Cuevas J, Ramírez S, Riuiz De León D, Fernández R, Vigil Dela Villa R, Leguey S (2006) Reaction kinetics of FEBEX bentonite in hyperalkaline conditions resembling the cement-bentonite interface. Appl Clay Sci 33:125–141

    Article  Google Scholar 

  • Sato T, Kuroda M, Yokoyama S, Tsutsui M, Pacau C, Ringor C, Fukushi K, Tanaka T, Nakayama S (2005) Dissolution kinetics of smectite under alkaline conditions. International meeting: clays in natural and engineering barriers for nuclear waste confinement, Tours, France

  • Savage D, Bateman K, Hill P, Hughes C, Milodowski A, Pearce J, Rae E, Rochelle C (1992) Rate and mechanism of the reaction of silicates with cement pore fluids. Appl Clay Sci 7:33–45

    Article  Google Scholar 

  • Savage D, Walker C, Arthur R, Rochelle C, Oda C, Takase H (2007) Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary minerals. Phys Chem Earth 32:287–297

    Article  Google Scholar 

  • Suzuki S, Sazarashi M, Akimoto T, Haginuma M, Suzuki K (2008) A study of the mineralogical alteration of bentonite in saline water. Appl Clay Sci 41:190–198

    Article  Google Scholar 

  • Taylor HFW (1987) A method for predicting alkali ion concentrations in cement pore solutions. Adv Cem Res 1:5–16

    Article  Google Scholar 

  • Villar MV, Lloret A (2004) Influence of temperature on the hydro-mechanical behavior of a compacted bentonite. Appl Clay Sci 26:337–350

    Article  Google Scholar 

  • Wersin P, Johnson L, McKinley I (2007) Performance of the bentonite barrier at temperatures beyond 100 °C: a critical review. Phys Chem Earth 32:780–788

    Article  Google Scholar 

  • Whitney G, Northrop HR (1988) Experimental investigation of the smectite to illite reaction: dual reaction mechanisms and oxygen isotope systematics. Am Miner 73:77–90

    Google Scholar 

  • Wood M (1983) Experimental investigation of sodium bentonite stability in Hanford basalt. In: Bookins DC (ed) Material research society symposium, Amsterdam 15, 727–743

  • Ye WM, Schanz T, Qian LX, Wang J, Arifin YF (2007) Characteristics of swelling pressure of densely compacted GMZ01 bentonite. Chin J Rock Mech Eng 26:3861–3865

    Google Scholar 

  • Ye WM, Cui YJ, Qian LX, Chen B (2009a) An experimental study of the water transfer through confined compacted GMZ bentonite. Eng Geol 108(3–4):169–176

    Article  Google Scholar 

  • Ye WM, Wan M, Chen B, Chen YG, Cui YJ, Wang J (2009b) Effect of temperature on soil-water characteristics and hysteresis of compacted Gaomiaozi bentonite. J Cent South Univ Technol 16(5):821–826

    Article  Google Scholar 

  • Ye WM, Wan M, Chen B, Chen YG, Cui YJ, Wang J (2012) Temperature effects on the unsaturated permeability of the densely compacted GMZ01 bentonite under confined conditions. Eng Geol 126:1–7

    Article  Google Scholar 

  • Ye WM, Zheng ZJ, Chen B, Chen YG, Cui YJ, Wang J (2014a) Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Appl Clay Sci 101:192–198

    Article  Google Scholar 

  • Ye WM, Zhang F, Chen B, Chen YG, Wang Q, Cui YJ (2014b) Effects of salt solutions on the hydro-mechanical behavior of compacted GMZ01 Bentonite. Environ Earth Sci 72(7):2621–2630

    Article  Google Scholar 

  • Zhu CM, Ye WM, Chen Y, Chen B, Cui YJ (2013) Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Eng Geol 166:74–80

    Article  Google Scholar 

  • Zysset M, Schindler P (1996) The proton promoted dissolution kinetics of K montmorillonite. Geochim Cosmochim Ac 60:921–936

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to China Atomic Energy Authority [Project (2011)1051], the National Natural Science Foundation of China (Projects No. 41272287, 41030748), for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, W.M., He, Y., Chen, Y.G. et al. Thermochemical effects on the smectite alteration of GMZ bentonite for deep geological repository. Environ Earth Sci 75, 906 (2016). https://doi.org/10.1007/s12665-016-5716-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5716-0

Keywords

Navigation