Skip to main content
Log in

Investigation of the adsorption/desorption equilibria of Cd(II), Zn(II) and Cu(II) ions on/from immobilized digested sludge using biosurfactants

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The study investigated the adsorption characteristic of Cd(II), Zn(II) and Cu(II) ions and their mixture on activated sludge immobilized in 1.5 % sodium alginate with 0.5 % polyvinyl alcohol (ASAA), and the desorption of these metal ions from biosorbent using biosurfactants (saponin and JBR 515) and HNO3. Cadmium, zinc and copper were most effectively adsorbed by the immobilized sludge in a pH range of 5.0–6.0. Desorption of metals with saponin was the most effective at pH 1–5, with rhamnolipid JBR 515—at pH 5–6 and with HNO3 at pH 2.0. The results of adsorption and desorption were presented with the use of Freundlich, Langmuir, Redlich–Peterson, Sips and a double Langmuir adsorption isotherm equations. The coefficient of determination R 2 and the average relative error were used to evaluate whether the models fit to experimental data. The best fit of the adsorption isotherm equation to experimental data was demonstrated for the double Langmuir isotherm. The highest adsorption capacity from solutions containing single metals was obtained for Cd (108.83 mg/g dm). For solutions containing metal mixture, the highest adsorption capacity (37.21 mg/g dm) was obtained for Cu. The highest desorption of single metals was received with the use of saponin and HNO3 (over 90 %). Biosurfactants were shown to be the most effective in leaching of metals from their mixture. The desorption efficiency of saponin for each metal was over 99 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Areco MM, Hanela S, Duran J, Afonso MS (2012) Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. J Hazard Mater 213–214:123–132. doi:10.1016/j.jhazmat.2012.01.073

    Article  Google Scholar 

  • Aşci Y, Nurbaş M, Açikel YS (2008) Removal of zinc ions from a soil component Na-feldspar by a rhamnolipid biosurfactant. Desalination 223:361–365. doi:10.1016/j.desal.2007.01.205

    Article  Google Scholar 

  • Aşci Y, Nurbaş M, Açikel YS (2010) Investigation of sorption/desorption equilibria of heavy metal ions on/from quartz using rhamnolipid biosurfactant. J Environ Manage 91:724–731. doi:10.1016/j.jenvman.2009.09.036

    Article  Google Scholar 

  • Bayramoğlu G, Arica MY (2009) Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies. Bioresour Technol 100:186–193. doi:10.1016/j.biortech.2008.05.050

    Article  Google Scholar 

  • Bayramoğlu G, Arıca MY (2008) Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chem Eng J 143:133–140. doi:10.1016/j.cej.2008.01.002

    Article  Google Scholar 

  • Bayramoğlu G, Tuzun I, Celik G, Yilmaz M, Arica MY (2006) Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int J Miner Process 81:35–43. doi:10.1016/j.minpro.2006.06.002

    Article  Google Scholar 

  • Cerino Córdova FJ, García León AM, Garcia Reyes RB, Garza González MT, Soto Regalado E, Sánchez González MN, Quezada López I (2011) Response surface methodology for lead biosorption on Aspergillus terreus. Int J Enviro Sci Technol 8(4):695–704

    Article  Google Scholar 

  • Chen J, Tao X, Xu J, Zhang T, Liu Z (2005) Biosorption of lead, cadmium and mercury by immobilized Microcystis aeruginosa in a column. Process Biochem 40:3675–3679. doi:10.1016/j.procbio.2005.03.066

    Article  Google Scholar 

  • Chen W-J, Hsiao L-Ch, Chen KK-Y (2008) Metal desorption from copper(II)/nickel(II)-spiked kaolin as a soil component using plant-derived saponin biosurfactant. Process Biochem 43:488–498. doi:10.1016/j.procbio.2007.11.017

    Article  Google Scholar 

  • Chen H, Chen C, Reddy AS, Chen C, Li WR, Tseng M, Liu H, Pan W, Maity JP, Atla SB (2011) Removal of mercury by foam fractionation using surfactin, a biosurfactant. Inter J Mol Sci 12(11):8245–8258. doi:10.3390/ijms12118245

    Article  Google Scholar 

  • Chong KH, Volesky B (1995) Description of two-metal biosorption equilibria by langmuir-type models. BiotechBioeng 47:451–460

    Google Scholar 

  • Cojocaru C, Diaconu M, Cretescua I, Savić J, Vasić V (2009) Biosorption of copper(II) ions from aqua solutions using dried yeast biomass. Colloids Surf A 335:181–188. doi:10.1016/j.colsurfa.2008.11.003

    Article  Google Scholar 

  • Dermot G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of phisical/chemical technologies and field applications. J Hazard Mater 152:1–31. doi:10.1016/j.jhazmat.2007.10.043

    Article  Google Scholar 

  • Do X, Lee B (2013) Removal of Pb2+ using a biochar-alginate capsule in aqueous solution and capsule regeneration. J Environ Manage 131:375–382. doi:10.1016/j.jenvman.2013.09.045

    Article  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. doi:10.1016/j.cej.2009.09.013

    Article  Google Scholar 

  • Freitas APP, Schneider IAH, Schwartz Bold A (2011) Biosorption of heavy metals by algal communities in water streams affected by the acid mine drainage in the coal-mining region of Santa Catarina state, Brazil. Min Eng 24(11):1215–1218. doi:10.1016/j.mineng.2011.04.013

    Article  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418. doi:10.1016/j.jenvman.2010.11.011

    Article  Google Scholar 

  • Gulnaz O, Kaya A, Dincer S (2006) The reuse of dried activated sludge for adsorption of reactive dye. J Hazard Mater 134(1):190–196. doi:10.1016/j.jhazmat.2005.10.050

    Article  Google Scholar 

  • Hajahmadi Z, Younesi H, Bahramifar N, Khakpour H, Pirzadeh K (2015) Multicomponent isotherm for biosorption of Zn(II), CO(II) andCd(II) from ternary mixture on to pretreated dried Aspergillus niger biomass. Water Res Ind 11:71–80. doi:10.1016/j.wri.2015.07.003

    Article  Google Scholar 

  • Hararah AM, Al-Nasir F, El-Hasan T, Al-Muhtaseb AH (2012) Zinc adsorption–desorption isotherms: possible effects on the calcareous vertisol soils from Jordan. Environ Earth Sci 65:2079–2085. doi:10.1007/s12665-011-1188-4

    Article  Google Scholar 

  • Hassimi HA, Siti RSA, Noorhisham TK, Siti KK (2012) Isotherm equilibria of Mn+2 biosorption in drinking water treatment by locally isolated Bacillus species and sewage activated sludge. J Environ Manage 111:34–43. doi:10.1016/j.jenvman.2012.06.027

    Article  Google Scholar 

  • Hong KJ, Tokunaga S, Kajiuchi T (2002) Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere 49:379–387. doi:10.1016/S0045-6535(02)00321-1

    Article  Google Scholar 

  • Kasan HC (1993) The role of waste activated sludge and bacteria in metal-ion removal from solution. Crit Rev Environ Sci Technol 23:79–117. doi:10.1080/10643389309388442

    Article  Google Scholar 

  • Khani MH, Pahlavanzadeh H, Alizadeh K (2012) Biosorption of strontium from aqueous solution by fungus Aspergillus terreus. Environ Sci Pollut Res 19:2408–2418. doi:10.1007/s11356-012-0753-z

    Article  Google Scholar 

  • Khosravan A, Lashkari B (2011) Adsorption of Cd(II) by Dried Activated Sludge. Iranian J Chem Eng 8(2):41–56

    Google Scholar 

  • Kosaric N (2001) Biosurfactant their application for soil bioremediation. Food Technol Biotechnol 39(4):295–301

    Google Scholar 

  • Kuczajowska-Zadrożna M, Filipkowska U (2016) Kinetics of desorption of heavy metals and their mixtures from immobilized activated sludge. Desalin Water Treat 57:9396–9408. doi:10.1080/19443994.2015.1031708

    Article  Google Scholar 

  • Kuczajowska-Zadrożna M, Filipkowska U, Jóźwiak T (2015) Application of biosurfactants for heavy metals leaching from immobilized activated sludge. Arch Environ Prot 41(1):43–52. doi:10.1515/acp-2015-0006

    Google Scholar 

  • Kumar PS, Gayathri R (2009) Adsorption of Pb2+ ions from aqueous solutions onto bael tree leaf powder: isotherms kinetics and thermodynamics study. J Eng Sci Technol 4(4):381–399

    Google Scholar 

  • Liu Z, Edwards DA, Luthy RG (1992) Sorption of non-ionic surfactants onto soil. Water Res 26:1337–1345. doi:10.1016/0043-1354(92)90128-Q

    Article  Google Scholar 

  • Machida M, Kikuchi Y, Aikawa M, Tatsumoto H (2004) Kinetics of adsorption and desorption of Pb(II) in aqueous solution on activated carbon by two-site adsorption model. Colloids Surf A 240(1–3):179–186. doi:10.1016/j.colsurfa.2004.04.046

    Article  Google Scholar 

  • Mane PC, Bhosle AB (2012) Bioremoval of some metals by living algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int J Environ Res 6(2):571–576

    Google Scholar 

  • Mansur HS, Costa HS (2008) Nanostructured poly(vinyl alcohol)/bioactive glass and poly (vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chem Eng J 137(1):72–83. doi:10.1016/j.cej.2007.09.036

    Article  Google Scholar 

  • Mata YN, Blázquez ML, Ballester A, González F, Muñoz JA (2009) Sugar-beet pulp pectin gels as biosorbent for heavy metals: preparation and determination of biosorption and desorption characteristics. Chem Eng J 150:289–301. doi:10.1016/j.cej.2009.01.001

    Article  Google Scholar 

  • Meitei MD, Prasad MNV (2013) Lead (II) and cadmium (II) biosorption on Spirodela polyrhiza (L.) Schleiden biomass. J Environ Chem Eng 1:200–207. doi:10.1016/j.jece.2013.04.016

    Article  Google Scholar 

  • Mishra SP (2014) Adsorption–desorption of heavy metal ions. Curr Sci 107(4):601–612

    Google Scholar 

  • Montazer-Rahmatia MM, Rabbania P, Abdolalia A, Keshtkarb AR (2011) Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. J Hazard Mater 185:401–407. doi:10.1016/j.jhazmat.2010.09.047

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Njikam E, Schiewer S (2012) Optimization and kinetic modeling of cadmium desorption from citrus peels: a process for biosorbent regeneration. J Hazard Mater. doi:10.1016/j.jhazmat.2012.01.084

    Google Scholar 

  • Oliveira FD, Soares AC, Freitas M, Figueiredo AS (2010) Copper, nickel and zinc removal by peanut hulls: batch and column studies in mono, tri-component systems and with real effluent. Global NEST J 12(2):206–214

    Google Scholar 

  • Ong S, Toorisaka E, Hirata M, Hano T (2013) Comparative study on kinetic adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge. Appl Water Sci 3:321–325

    Article  Google Scholar 

  • Pietrobelli JMTA, Módenes AN, Fagundes-Klen MR, Espinoza-Quiñones FR (2009) Cadmium, copper and zinc biosorption study by non-living Egeria densa biomass. Water Air Soil Pollut 202:385–392. doi:10.1007/s11270-009-9987-x

    Article  Google Scholar 

  • Plaza Cazón J, Viera M, Donati E, Guibal E (2013) Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes. J Environ Manage 129:423–434. doi:10.1016/j.jenvman.2013.07.011

    Article  Google Scholar 

  • Rajaei GE, Aghaie H, Zare K, Aghaie M (2013) Adsorption of Cu(II) and Zn(II) ions from aqueous solutions onto fine powder of Typha latifolia L. root: kinetics and isotherm studies. Res Chem Intermed 39:3579–3594. doi:10.1007/s11164-012-0864-7

    Article  Google Scholar 

  • Schippers C, Geßner K, Muller T, Scheper T (2000) Microbial degradation of phenenthrene by addition of a sophorolipid mixture. J Biotech 83:189–198. doi:10.1016/SO168-1656(00)00304-7

    Article  Google Scholar 

  • Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun 319:291–297

    Article  Google Scholar 

  • Song WJ, Pan X, Zhang D (2012) Lead complexation of soluble and bound extracellular polymeric substances from activated sludge: characterized with fluorescence spectroscopy and FTIR spectroscopy. Biotechnol Biotechnol Equip 26(6):3371–3377

    Article  Google Scholar 

  • Swamy BY, Chang JH, Ahn H, Lee WK, Chung I (2013) Thermoresponsive N-vinyl caprolactam grafted sodium alginate hydrogel beads for the controlled release of an anticancer drug. Cellulose 20(3):1261–1273. doi:10.1007/s10570-013-9897-3

    Article  Google Scholar 

  • Tabaraki R, Ahmady-Asbchin S, Abdi O (2013) Biosorption of Zn(II) from aqueous solutions by Acinetobacter sp. isolated from petroleum spilled soil. J Environ Chem Eng 1:604–608. doi:10.1016/j.jece.2013.06.024

    Article  Google Scholar 

  • Tam NFY, Wong YS, Wong MH (2009) Novel technology in pollutant removal at source and bioremediation. Ocean Coast Manag 7:368–373. doi:10.1016/j.ocecoaman.2009.04.009

    Article  Google Scholar 

  • Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216

    Article  Google Scholar 

  • Wang S, Mulligan CN (2004) An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere 57:1079–1089

    Article  Google Scholar 

  • Wang S, Mulligan CN (2009) Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings. Process Biochem. doi:10.1016/j.procbio.2008.11.006

    Google Scholar 

  • Wen J, Stacey SP, McLaughlin MJ, Kirby JK (2009) Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biol Biochem 41(10):2214–2221. doi:10.1016/j.soilbio.2009.08.006

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Grant: KBN NN523 452936 (Poland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Filipkowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filipkowska, U., Kuczajowska-Zadrożna, M. Investigation of the adsorption/desorption equilibria of Cd(II), Zn(II) and Cu(II) ions on/from immobilized digested sludge using biosurfactants. Environ Earth Sci 75, 814 (2016). https://doi.org/10.1007/s12665-016-5674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5674-6

Keywords

Navigation