Skip to main content
Log in

Influence of the gap ratio on variations in the surface shear stress and on sand accumulation in the lee of two side-by-side obstacles

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Changes in the surface shear stress in the lee of two side-by-side obstacles result in sand deposition and the development of aeolian sand drifts. Through direct wind tunnel measurements using Irwin-type sensors, surface shear stress behind two side-by-side obstacles separated by gaps with different gap ratios (the ratio of the gap spacing between the obstacles to the center-to-center distance for the obstacles) was measured. Particular attention to the effects of the spacing between the two obstacles on the initiation of sand drifts has been paid. The results showed that the gap ratio was the key factor that determined the shear stress patterns. Wind speed increased through the gap, but decreased a short distance downwind, causing higher peak skin-friction velocities and higher shear stress immediately behind the obstacles, producing a range of sand deposition patterns in the sheltered lee side of the obstacles. Comparison of plots of surface shear stress and isoline plots of ψ (for the fraction of the total time in which a given threshold skin-friction velocity was exceeded) with the sand deposition patterns confirmed that sand drift may form in the lee of a gap between two adjacent obstacles when the gap ratio g* ≤ 0.44, and it may disappeared when the gap ratio larger than this value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen JRL (1982) Developments in sedimentology, Vol. 30, Part B: sedimentary structures their character and physical basis, vol II. Elsevier, Amsterdam

    Google Scholar 

  • Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen & Co., Ltd., London

    Google Scholar 

  • Brown S, Nickling WG, Gillies JA (2008) A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distributions. J Geophys Res-Earth Surf 113:F02S06. doi:10.1029/2007JF000790

    Article  Google Scholar 

  • Burri K, Gromke C, Lehning M, Graf F (2011) Aeolian sediment transport over vegetation canopies: a wind tunnel study with live plants. Aeolian Res 3:205–213

    Article  Google Scholar 

  • Burri K, Gromke C, Leonard K, Graf F (2013) Spatial patterns of aeolian sediment deposition in vegetation canopies: observations from wind tunnel experiments using colored sand. Aeolian Res 8:67–73. doi:10.1016/j.aeolia.2012.11.002

    Google Scholar 

  • Cook R, Warren A, Goudie A (1993) Desert geomorphology. UCL Press, London

    Google Scholar 

  • Crawley DM, Nickling WG (2003) Drag partition for regularly-arrayed rough surfaces. Bound Layer Meteorol 107:445–468

    Article  Google Scholar 

  • Faria R, Ferreira AD, Sismeiro JL, Mendes JCF, Sousa ACM (2011) Wind tunnel and computational study of the stoss slope effect on the aeolian erosion of transverse sand dunes. Aeolian Res 3:303–314. doi:10.1016/j.aeolia.2011.07.004

    Article  Google Scholar 

  • Gillies JA, Nickling WG, King J (2006) Aeolian sediment transport through large patches of roughness in the atmospheric inertial sublayer. J Geophys Res 111:F02006. doi:10.1029/2005JF000434

    Article  Google Scholar 

  • Gillies JA, Nickling WG, King J (2007) Shear stress partitioning in large patches of roughness in the atmospheric inertial sublayer. Bound Layer Meteorol 122:367–396. doi:10.1007/s10546-006-9101-5

    Article  Google Scholar 

  • Greeley R, Iversen JD (1985) Wind as a geological process on Earth, Mars, Venus and Titan. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Huang N, Shi F, Van Pelt RS (2008) The effects of slope and slope position on local and upstream fluid threshold friction velocities. Earth Surf Proc Land 33:1814–1823

    Article  Google Scholar 

  • Irwin HPAH (1981) A simple omnidirectional sensor for wind-tunnel studies of pedestrian-level winds. J Wind Eng Ind Aerodyn 7(3):219–239. doi:10.1016/0167-6105(81)90051-9

    Article  Google Scholar 

  • Iversen JD, Rasmussen KR (1994) The effect of surface on saltation threshold. Sedimentology 41:721–728

    Article  Google Scholar 

  • Iversen JD, Wang WP, Rasmussen KR, Mikkelsen HE, Hasiuk JF, Leach RN (1990) The effect of a roughness element on local saltation transport. J Wind Eng Aerodyn 36:845–854

    Article  Google Scholar 

  • King J, Nickling WG, Gillies JA (2005) Representation of vegetation and other nonerodible elements in Aeolian shear stress partitioning models for predicting transport threshold. J Geophys Res 110:F04015. doi:10.1029/2004JF000281

    Article  Google Scholar 

  • King J, Nickling WG, Gillies JA (2006) Aeolian shear stress ratio measurements within mesquite-dominated landscapes of the Chihuahuan Desert, New Mexico, USA. Geomorphology 82:229–244

    Article  Google Scholar 

  • Luo WY, Dong ZB, Qian GQ, Lu JF (2012) Wind tunnel simulation of the three-dimensional airflow patterns behind cuboid obstacles at different angles of wind incidence, and their significance for the formation of sand shadows. Geomorphology 139–140:258–270. doi:10.1016/j.geomorph.2011.10.027

    Article  Google Scholar 

  • Luo WY, Dong ZB, Qian GQ, Lu JF (2014) Near-wake flow patterns in the lee of adjacent obstacles and their implications for the formation of sand drifts: a wind tunnel simulation of the effects of gap spacing. Geomorphology 213:190–200. doi:10.1016/j.geomorph.2014.01.008

    Article  Google Scholar 

  • Lyles L, Schrandt RL, Schmeidler NF (1974) How aerodynamic roughness elements control sand movement. Trans Am Soc Agric Eng 17(1):134–139

    Article  Google Scholar 

  • Marshall JK (1971) Drag measurements in roughness arrays of varying density and distribution. Agric Meteorol 8:269–292

    Article  Google Scholar 

  • McKenna-Neuman C, Nickling WG (1995) Aeolian sediment flux decay: non-linear behaviour on developing deflation lag surfaces. Earth Surf Proc Land 20(5):423–435. doi:10.1002/esp.3290200504

    Article  Google Scholar 

  • Monteiro JP, Viegas DX (1996) On the use of Irwin and Preston wall shear stress probes in turbulent incompressible flows with pressure gradients. J Wind Eng Ind Aerodyn 11(1):15–29. doi:10.1016/S0167-6105(96)00091-8

    Article  Google Scholar 

  • Musick HB, Trujillo SM, Truman CR (1996) Wind tunnel modeling of the influence of vegetation structure on saltation threshold. Earth Surf Proc Land 21(7):589–605

    Article  Google Scholar 

  • Nickling WG (1988) The initiation of particle movement by wind. Sedimentology 35(3):499–511. doi:10.1111/j.1365-3091.1988.tb01000.x

    Article  Google Scholar 

  • Pye K, Tsoar H (1990) Aeolian sand and sand dunes. Unwin Hyman, London

    Book  Google Scholar 

  • Qian GQ, Dong ZB, Luo WY, Lu JF (2011) Mean airflow patterns upwind of topographic obstacles and their implications for the formation of echo dunes: a wind tunnel simulation of the effect of windward slope. J Geophys Res-Earth Surf 116:F04026. doi:10.1029/2011JF002020

    Google Scholar 

  • Raupach MR, Gillette DA, Leys JF (1993) The effect of roughness elements on wind erosion threshold. J Geophys Res 98(D2):3023–3029. doi:10.1029/92JD01922

    Article  Google Scholar 

  • Stout JE (2004) A method for establishing the critical threshold for aeolian transport in the fields. Earth Surf Proc Land 29:1195–1207

    Article  Google Scholar 

  • Stout JE (2007) Simultaneous observations of the critical aeolian threshold of two surfaces. Geomorphology 85:3–16

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Sumner D (2010) Two circular cylinders in cross-flow: a review. J Fluids Struct 26(6):849–899. doi:10.1016/j.jfluidstructs.2010.07001

    Article  Google Scholar 

  • Sutton SLF, McKenna-Neuman C (2008) Variation in bed level shear stress on surface sheltered by nonerodible roughness elements. J Geophys Res-Earth Surf 113:F03016. doi:10.1029/2007JF000967

    Article  Google Scholar 

  • Walker IJ, Nickling WG (2003) Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes in a wind tunnel. Earth Surf Proc Land 28(10):1111–1124. doi:10.1002/esp.520

    Article  Google Scholar 

  • Walter B, Gromke C, Lehning M (2012a) Shear-stress partitioning in live plant canopies and modifications to Raupach’s model. Bound-Layer Meteorol 144(2):217–241. doi:10.1007/s10546-012-9719-4

    Article  Google Scholar 

  • Walter B, Gromke C, Leonard K, Clifton A, Lehning M (2012b) Spatially resolved skin friction velocity measurements using Irwin sensors: a calibration and accuracy analysis. J Wind Eng Ind Aerodyn 104–106:314–321. doi:10.1016/j.jweia.2012.02.018

    Article  Google Scholar 

  • Walter B, Gromke C, Leonard K, Manes C, Lehning M (2012c) Spatio-temporal surface shear-stress variability in live plant canopies and cube arrays. Bound-Layer Meteorol 143(2):337–356. doi:10.1007/s10546-011-9690-5

    Article  Google Scholar 

  • White BR (1996) Laboratory simulation of aeolian sand transport and physical modeling of flow around dunes. Ann Arid Zone 35:187–213

    Google Scholar 

  • Wu HQ, Stathopoulos T (1994) Further experiments on Irwin’s wind sensor. J Wind Eng Ind Aerodyn 53(3):441–452. doi:10.1016/0167-6105(94)90095-7

    Article  Google Scholar 

  • Wyatt VE, Nickling WG (1997) Drag and shear stress partitioning in sparse desert creosote communities. Can J Earth Sci 34(11):1486–1498. doi:10.1139/e17-12

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (41371026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanyin Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Lu, J., Qian, G. et al. Influence of the gap ratio on variations in the surface shear stress and on sand accumulation in the lee of two side-by-side obstacles. Environ Earth Sci 75, 766 (2016). https://doi.org/10.1007/s12665-016-5588-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5588-3

Keywords

Navigation