Skip to main content
Log in

Adsorption of Cd2+ and Pb2+ onto coconut shell biochar and biochar-mixed soil

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Permeable reactive barrier (PRB) systems containing effective and low-cost adsorbents for heavy metals are expected to function as in situ treatment methods for leachate from waste landfills and contaminated groundwater surrounding the landfills in developing countries. This study was conducted to characterize the adsorption of Cd2+ and Pb2+ onto coconut shell biochar (fine granules), a local soil from Sri Lanka (Entisol), and a biochar-mixed soil (1:1 mixture of biochar and soil) as potential adsorbents for PRB systems. Batch experiments were carried out to investigate the effects of solution pH, contact time, initial ion concentration, and competitive ions on the Cd2+ and Pb2+ adsorption. Results showed that the adsorption kinetics of Cd2+ and Pb2+ onto all adsorbents were well described by the pseudo second order kinetics model and that adsorption isotherms followed the Langmuir model. In the range of pH ≥3, the initial solution pH had a minor effect on efficiency of metal removal and the removal of metals mostly exceeded 80 % for all adsorbents. Measured maximum adsorptions onto soil and biochar-mixed soil were 30.1 mmol/g for Cd2+ and 44.8–46.7 mmol/g for Pb2+. These adsorption capacities are similar to or higher than the values of biosorbents tested for wastewater treatment in previous studies, suggesting our tested materials would be useful as adsorbents of Cd2+ and Pb2+ in PRB systems. Additional analysis by scanning electron microscopy linked with energy dispersive X-ray revealed that both Cd2+ and Pb2+ exhibited high adsorption affinity towards soil particles while adsorbing randomly to biochar granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abd-Elfattah ALY, Wada K (1981) Adsorption of lead, copper, zinc, cobalt, and cadmium by soils that differ in cation-exchange materials. J Soil Sci 32:271–283. doi:10.1111/j.1365-2389.1981.tb01706.x

    Article  Google Scholar 

  • Altin O, Ozbelge OH, Dogu T (1999) Effect of pH, flow rate and concentration on the sorption of Pb and Cd on montmorillonite: I. Experimental. J Chem Techol Biotechnol 74:1131–1138. doi:10.1002/(SICI)1097-4660(199912)74:12<1131:AID-JCTB158>3.0.CO;2-0

    Article  Google Scholar 

  • Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman ARA (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131:374–379. doi:10.1016/j.biortech.2012.12.165

    Article  Google Scholar 

  • Al-Yaqout AF, Hamoda MF (2003) Evaluation of landfill leachate in arid climate—a case study. Environ Int 29:593–600. doi:10.1016/S0160-4120(03)00018-7

    Article  Google Scholar 

  • Annadural G, Juang RS, Lee DJ (2003) Adsorption of heavy metals from water using banana and orange peels. Water Sci Technol J Int Assoc Water Poll Res 47:185–190

    Google Scholar 

  • Appel C, Ma LQ, Rhue RD, Reve W (2008) Sequential sorption of lead and cadmium in three tropical soils. Environ Poll 155:132–140. doi:10.1016/j.envpol.2007.10.026

    Article  Google Scholar 

  • Babel S, Kurniawan TA (2004) Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 54:951–967. doi:10.1016/j.chemosphere.2003.10.001

    Article  Google Scholar 

  • Bansal M, Garg U, Singh D, Garg VK (2009) Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: a case study of rice husk. J Hazard Mater 162:312–320. doi:10.1016/j.jhazmat.2008.05.037

    Article  Google Scholar 

  • Baun A, Ledin A, Reitzel LA, Bjerg PL, Christensen TH (2004) Xenobiotic organic compounds in leachates from ten Danish MSW landfills—chemical analysis and toxicity tests. Water Res 38:3845–3858. doi:10.1016/j.watres.2004.07.006

    Article  Google Scholar 

  • Blázquez G, Hernáinz F, Calero M, Ruiz-Núñez LF (2005) Removal of cadmium ions with olive stones: the effect of somes parameters. Process Biochem 40:2649–2654. doi:10.1016/j.procbio.2004.11.007

    Article  Google Scholar 

  • Božić D, Stanković V, Gorgievski M, Bogdanović G, Kovačević R (2009) Adsorption of heavy metal ions by sawdust of deciduous trees. J Hazard Mater 171:684–692. doi:10.1016/j.jhazmat.2009.06.055

    Article  Google Scholar 

  • Brooks R BM, Tovia F, Rostami H (2010) Removal of lead from contaminated water. Int J Soil Sediment Water 3(2): Article 14

  • Bulgariu D, Bulgariu L (2012) Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresour Technol 103:489–493. doi:10.1016/j.biortech.2011.10.016

    Article  Google Scholar 

  • Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102:716–723. doi:10.1016/j.biortech.2010.08.067

    Article  Google Scholar 

  • Cheng TW, Lee ML, Ko MS, Ueng TH, Yang SF (2012) The heavy metal adsorption characteristics on metakaolin-based geopolymer. Appl Clay Sci 56:90–96. doi:10.1016/j.clay.2011.11.027

    Article  Google Scholar 

  • Child R (1940) Coconut shell charcoal, leaflet. Coconut Research Scheme, Coconut Board, Ceylon

  • Costa JFdSS, Vilar VJP, Botelho CMS, da Silva EAB, Boaventura RAR (2010) Application of the Nernst-Planck approach to lead ion exchange in Ca-loaded Pelvetia canaliculata. Water Res 44:3946–3958. doi:10.1016/j.watres.2010.04.033

    Article  Google Scholar 

  • Devare M, Bahadir M (1994) Biological monitoring of landfill leachate using plants and luminescent bacteria. Chemosphere 28:261–271. doi:10.1016/0045-6535(94)90123-6

    Article  Google Scholar 

  • Di Natale F, Di Natale M, Greco R, Lancia A, Laudante C, Musmarra D (2008) Groundwater protection from cadmium contamination by permeable reactive barriers. J Hazard Mater 160:428–434. doi:10.1016/j.jhazmat.2008.03.015

    Article  Google Scholar 

  • Fidel RB (2012) Evaluation and implementation of methods for quantifying organic and inorganic components of biochar alkalinity. Iowa State University

  • Fidel RB, Laird DA, Thompson ML (2013) Evaluation of modified boehm titration methods for use with biochars. J Environ Qual 42:1771–1778. doi:10.2134/jeq2013.07.0285

    Article  Google Scholar 

  • FitzPatrick EA (1980) Soils. Their formation, classification and distribution. Longman, London

  • Henderson AD, Demond AH (2007) Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environ Eng Sci 24:401–423

    Article  Google Scholar 

  • IBI (2013) Standardized product definition and product testing guidelines for biochar that is used in soil. International Biochar Initiative

  • Igwe JC, Abia AA (2007) Adsorption isotherm studies of Cd (II), Pb(II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob. Eclética Química 32:33–42

    Article  Google Scholar 

  • Inyang M, Gao B, Yao Y, Xue Y, Zimmerman AR, Pullammanappallil P, Cao X (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56. doi:10.1016/j.biortech.2012.01.072

    Article  Google Scholar 

  • Javed MA, Bhatti HN, Hanif MA, Nadeem R (2007) Kinetic and equilibrium modeling of Pb(II) and Co (II) sorption onto rose waste biomass. Sep Sci Technol 42:3641–3656

    Article  Google Scholar 

  • Jiang TY, Jiang J, Xu RK, Li Z (2012) Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89:249–256. doi:10.1016/j.chemosphere.2012.04.028

    Article  Google Scholar 

  • Kang BT, Tripathi B (2015) Technical paper 1: Soil classification and characterization. http://www.fao.org/wairdocs/ilri/x5546e/x5546e04.htm. Accessed 20 Oct 2015

  • Kula I, Ugurlu M, Karaoglu H, Celik A (2008) Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour Technol 99:492–501. doi:10.1016/j.biortech.2007.01.015

    Article  Google Scholar 

  • Lehmann J, Joseph S (2006) Biochar for environmental management. Earthscan, New York

    Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Global Change 11(2):395–419

    Article  Google Scholar 

  • Liu Z, Zhang F-S (2009) Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J Hazard Mater 167:933–939. doi:10.1016/j.jhazmat.2009.01.085

    Article  Google Scholar 

  • Mapa RB, Somasiri S, Dassnayake AR (2010) Soils of the dry zone of Sri Lanka. Soil Science Society of Sri Lanka, Soils of the Dry Zone of Sri Lanka, Peradeniya

  • OECD (2000) OECD Guidelines for the Testing of Chemicals. Organisation for Economic Co-operation and Development Publications, Paris

    Google Scholar 

  • Pagliai M, Vignozzi N, Pellegrini S (2004) Soil structure and the effect of management practices. Soil Tillage Res 79:131–143. doi:10.1016/j.still.2004.07.002

    Article  Google Scholar 

  • Paranavithana GN, Sewwandi BGN, Kawamoto K (2013) Soil characterization for the development of site-specific permeable reactive barrier in Sri Lanka: Mineralogical and surface charge properties for selected surface geologic media. International Conference on Structural Engineering & Construction Management (ICSECM 2013), SECM/13/120

  • Park JB, Lee SH, Lee JW, Lee CY (2002) Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B). J Hazard Mater 95:65–79

    Article  Google Scholar 

  • Qin F, Wen B, Shan X-Q, Xie Y-N, Liu T, Zhang S-Z, Khan SU (2006) Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environ Poll 144:669–680. doi:10.1016/j.envpol.2005.12.036

    Article  Google Scholar 

  • Sewwandi BGN, Vithanage M, Wijesekara SSRMDHR, Rajapaksha AU, Jayarathna DGLM, Mowjood MIM (2012) Characterization of aqueous Pb(II) and Cd(II) biosorption on native and chemically modified Alstonia macrophylla saw dust. Biorem J 16(2):113–124

    Article  Google Scholar 

  • Sewwandi B, Koide T, Kawamoto K, Hamamoto S, Asamoto S, Sato H (2013) Evaluation of leachate contamination potential of municipal solid waste dumpsites in Sri Lanka using leachate pollution index. Proceedings of fourteenth international waste management and landfill symposium (Sardinia), 233

  • Sewwandi B, Vithanage M, Wijesekara S, Mowjood M, Hamamoto S, Kawamoto K (2014) Adsorption of Cd(II) and Pb(II) onto humic acid-treated coconut (Cocos nucifera) Husk. J Hazard Toxic Radioact Waste 18:04014001. doi:10.1061/(ASCE)HZ.2153-5515.0000196

    Article  Google Scholar 

  • Shenbagavalli S, Mahimairaja S (2012) Production and characterization of biochar from different biological wastes. Int J Plant Anim Environ Sci 2

  • Tränkler J, Visvanathan C, Kuruparan P, Tubtimthai O (2005) Influence of tropical seasonal variations on landfill leachate characteristics—results from lysimeter studies. Waste Manag 25:1013–1020. doi:10.1016/j.wasman.2005.05.004

    Article  Google Scholar 

  • Tsai WT, Lee MK, Chang YM (2006) Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrolysis 76:230–237. doi:10.1016/j.jaap.2005.11.007

    Article  Google Scholar 

  • Tsechansky L, Graber ER (2014) Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration. Carbon 66:730–733. doi:10.1016/j.carbon.2013.09.044

    Article  Google Scholar 

  • Uchimiya M, Lima IM, Thomas Klasson K, Chang S, Wartelle LH, Rodgers JE (2010) Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J Agric Food Chem 58:5538–5544. doi:10.1021/jf9044217

    Article  Google Scholar 

  • UNESCAP (2014) Pro-poor and sustainable solid waste management in secondary cities and small towns in Asia-Pacific. http://www.unescap.org/resources/pro-poor-and-sustainable-solid-waste-management-secondary-cities-and-small-towns-asia-0. Accessed 20 Oct 2015

  • Vithanage M, Senevirathna W, Chandrajith R, Weerasooriya R (2007) Arsenic binding mechanisms on natural red earth: a potential substrate for pollution control. Sci Total Environ 379:244–248. doi:10.1016/j.scitotenv.2006.03.045

    Article  Google Scholar 

  • Wang Y, Hu Y, Zhao X, Wang S, Xing G (2013) Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy Fuels 27:5890–5899. doi:10.1021/ef400972z

    Article  Google Scholar 

  • Wijesekara SSRMDHR, Mayakaduwa SS, Siriwardana AR, de Silva N, Basnayake BFA, Kawamoto K, Vithanage M (2014) Fate and transport of pollutants through a municipal solid waste landfill leachate in Sri Lanka. Environ Earth Sci. doi:10.1007/s12665-014-3075-2

    Google Scholar 

  • Xu RK, Zhao AZ (2013) Effect of biochars on adsorption of Cu(II), Pb(II) and Cd(II) by three variable charge soils from southern China. Environ Sci Poll Res Int 20:8491–8501. doi:10.1007/s11356-013-1769-8

    Article  Google Scholar 

  • Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011) Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J Hazard Mater 190:501–507. doi:10.1016/j.jhazmat.2011.03.083

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the JST/JICA Science and Technology Research Partnership for Sustainable Development (SATREPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Paranavithana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paranavithana, G.N., Kawamoto, K., Inoue, Y. et al. Adsorption of Cd2+ and Pb2+ onto coconut shell biochar and biochar-mixed soil. Environ Earth Sci 75, 484 (2016). https://doi.org/10.1007/s12665-015-5167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5167-z

Keywords

Navigation