Skip to main content
Log in

Anthropogenic particle dispersions in topsoils of the Middle Nile Delta: a preliminary study on the contamination around industrial and commercial areas in Egypt

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Increased industrialization has adversely affected various components of the environment including soil, which is the ultimate site of settling and accumulation of fly ash. Fine respirable size particles in the atmosphere are detrimental to human health and their ultimate accumulation in the soil leads to soil pollution. In this study, these particles were identified, quantified and subjected to intensive analysis by SEM/EDX. Accordingly, the physical and chemical characteristics, the origin and the pathway of such particulates are documented for the Middle Nile Delta using the magnetic susceptibility as proxy for the industrial emissions. The average bulk density of magnetic spherules varies between 4.4 ± 0.7, 4.8 ± 0.9 and 5.4 ± 0.6 g/cm3 for the >125, 63–125 and 36–63 μm fractions, respectively, and consists predominantly of iron oxides with variable amounts of Ti, Si, Mn, Mg, Al, Ca, Cr and Cu. Their attached grains and adhesive materials are commonly composed of various contents of Si, Al, Fe, Ca, P, Zn, Ba and S depending on their origin. The results indicated that most surface soil samples are enhanced magnetically than the natural local background magnetic signal due to atmospherically deposited urban dust. The industrial sites are characterized by highest average magnetic susceptibility value (47 × 10−5 m3g−1) combined with highest concentration of magnetic spherules (66 sph.g−1). Moreover, the residential area surrounding industrial zones—particularly those located in the windblown (SE) direction—is seriously affected by industrial dust. This study provides a database to evolve strategies for remedial measures to minimize environmental degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abu Khatita AM (2011) Assessment of soil and Sediment contamination in the Middle Nile Delta area (Egypt); geo-environmental study using combined sedimentological, geophysical and geochemical methods. Erlangen-Nürnberg, Germany: Friedrich-Alexander University, Doctoral thesis, pp 214

  • Aoun M, El Samrani AG, Lartiges BS, Kazpard V, Saad Z (2010) Releases of phosphate fertilizer industry in the surrounding environment: investigation on heavy metals and polonium-210 in soil. J Environ Sci 22:1387–1397

    Article  Google Scholar 

  • Atwia MG, Abou-Heleika MM, El-Shishtawy AM, Sharp JMJ (2006) Hydrostratigraphy of the Central Nile Delta, Egypt, Using Geoelectric Measurements. EGS AGU EUG Joint Assem Nice Fr 5:6–11

    Google Scholar 

  • Aunan K (1996) Exposure-response functions for health effects of air pollutants based on epidemiological findings. Risk Anal 16:693–709

    Article  Google Scholar 

  • Ausset P, Bannery F, DelMonte M, Lefevre RA (1998) Recording of pre-industrial atmospheric environment by ancient crusts on stone monuments. Atmos Environ 32:2859–2863

    Article  Google Scholar 

  • Banerjee ADK (2003) Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environ Pollut 123:95–105

    Article  Google Scholar 

  • Bateson TF, Schwartz J (2007) Children’s response to air pollutants. J Toxicol Env Health 71:238–243

    Article  Google Scholar 

  • Bernabé JM, Carretero MI, Galan E (2005) Minerology and origin of atmospheric particles in the industrial area of Huelva (SWSpain). Atmos Environ 39:777–6789

    Article  Google Scholar 

  • Blaha U, Sapkota B, Appel E, Stanjek H (2008) Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies. Atmos Environ 42:8359–8370

    Article  Google Scholar 

  • Brook RD, Franklin B, Cascio W, Hong Y, Howard G (2004) Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 109:2655–2671

    Article  Google Scholar 

  • Campos-Ramos A, Piña AA, Querol X, Alastuey A (2010) Methodology for the characterization and identification by SEM-EDS of atmospheric particles from different pollutions emission. In: Méndez-Vilas A, Díaz J (eds) Microscopy: Science, Technology, Applications and Education. Formatex Research Center, pp 323–339

  • Catinon M, Ayrault S, Spadini L, Boudouma O, Asta L, Tissut M, Ravanel P (2011) Tree bark suber-included particles: a long-term accumulation site for elements of atmospheric origin. Atmos Environ 45:1102–1109

    Article  Google Scholar 

  • Catinon M, Ayrault S, Boudouma O (2014) Isolation of technogenic magnetic particles. Sci Total Environ 475:39–47

    Article  Google Scholar 

  • Coz E, Gómez-Moreno FJ, Pujadas M, Casuccio GS, Lersch TL, Artiňano B (2009) Individual particle characteristics of North African dust under different long range transport scenarios. Atmos Environ 43:1850–1863

    Article  Google Scholar 

  • D’Emilio M, Caggiano R, Coppola R, Macchiato M, Macchiato M (2010) Magnetic susceptibility measurements as proxy method to monitor soil pollution: the case study of S Nicola di Melfi. Environ Monit Assess 169:619–630

    Article  Google Scholar 

  • Dearing JA, Hay KL, Baban SMJ, Huddleston AS, Wellington EMH, Loveland PJ (1996) Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set. Geophys J Int 127:728–773

    Article  Google Scholar 

  • Dockery DW, Pope CA III (1994) Acute respiratory effects of particulate air pollution. Annu Rev Public Health 15:107–132

    Article  Google Scholar 

  • Duan XM, Hu SY, Yan H, Blaha U, Roesler W, Appel E, Sun W (2010) Relationship between magnetic parameters and heavy element contents of arable soil around Meishan steel mill, Nanjing. Sci China Earth Sci 53:411–418

    Article  Google Scholar 

  • Dudas MJ, Warren CJ (1987) Submicroscopic model of fly ash particles. Geoderma 40:101–114

    Article  Google Scholar 

  • Duzgoren-Aydin NS, Wong CSC, Aydin A, Song Z, You M, Li XD (2006) Heavy metal contamination and distribution in the urban environment of Guangzhou, SE China. Environ Geochem Health 28:375–391

    Article  Google Scholar 

  • El Baghdadi M, Barakat A, Sajieddine M, Nadem S (2012) Heavy metal pollution and soil magnetic susceptibility in urban soil of BeniMellal City (Morocco). Environ Earth Sci 66:141–155

    Article  Google Scholar 

  • El-Hasan T, Lataifeh M (2013) Field and dual magnetic susceptibility proxies for heavy metal pollution assessment in the urban soil of Al-Karak City, South Jordan. Environ Earth Sci 69:2299–2310

    Article  Google Scholar 

  • Fassbinder JWE, Stanjek H, Vali H (1990) Occurrence of magnetic bacteria in soil

  • Fisher GL, Chang DPY, Brummer G (1976) Fly ash collected from electrostatic precipitators: microcrystalline structures and the mystery of the spheres. Science 192:553–555

    Article  Google Scholar 

  • Gautam P, Blaha U, Appel E (2005) Magnetic susceptibility of dust loaded leaves as a proxy of traffic related heavy metal pollution in Kathmandu city Nepal. Atmos Environ 39:2201–2221

    Article  Google Scholar 

  • Goldstein HL, Siegmunce CW (1976) Influence of heavy oil composition and boiler combustion conditions on particulate emissions. Environ Sci Technol 10:1109–1114

    Article  Google Scholar 

  • Griffin JJ, Goldberg ED (1981) Sphericity as a characteristic of solids from fossil fuel burning in a Lake Michigan sediment. Geochim Cosmochim Acta 45:763–769

    Article  Google Scholar 

  • Hanesch M, Scholger R (2002) Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ Geol 42:857–870

    Article  Google Scholar 

  • Hay KL, Dearing JA, Baban SMJ, Loveland P (1997) A preliminary attempt to identify atmospherically derived pollution particles in English topsoils from magnetic susceptibility measurements. Phys Chem Earth 22:207–210

    Article  Google Scholar 

  • Heinrich J, Wichmann HE (2004) Traffic related pollutants in Europe and their effect on allergic disease. Curr Opin Allergy Clin 4:341–348

    Article  Google Scholar 

  • Humphreys GS, Shakesby RA, Doerr SH, Blake WH, Wallbrink P, Hart DM (2003) Some effects of fire on the regolith. In: Roach IC (ed) Advances in regolith. CRC LEME Symposium, pp 216–220

  • Hunt A, Jones J, Oldfield F (1984) Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin. Sci Total Environ 33:129–139

    Article  Google Scholar 

  • Jones RL, Olsen KR (1990) Fly ash use as a time marker in sedimentation studies. Soil Sci Soc Am J 54:855–859

    Article  Google Scholar 

  • Jordanova D, Hoffmann V, Fehr KT (2004) Mineral magnetic characterization of anthropogenic magnetic phase in the Danube river sediments (Bulgarian part). Earth Planet Sci Lett 221:71–89

    Article  Google Scholar 

  • Jordanova D, Goddu SR, Kotsev T, Jordanova N (2013) Industrial contamination of alluvial soils near Fe–Pb mining site revealed by magnetic and geochemical studies. Geoderma 192:237–248

    Article  Google Scholar 

  • Jordanova D, Jordanova N, Petrov P (2014) Magnetic susceptibility of road deposited sediments at a national scale-Relation to population size and urban pollution. Environ Pollut 189:239–251

    Article  Google Scholar 

  • Kapicka A, Petrovsky E, Fialova H, Podrazsky X, Dvorak I (2008) High resolution mapping of anthropogenic pollution in the Giant Mountains National Park using soil magnetometry. Stud Geophys Geod 52:271–284

    Article  Google Scholar 

  • Karimi R, Ayoubi S, Jalalian A, Sheikh-Hosseini AR, Afyuni M (2011) Relationships between magnetic susceptibility and heavy metals in urban topsoils in the arid region of Isfahan, central Iran. J Appl Geophys 74:1–7

    Article  Google Scholar 

  • Kim W, Doh SJ, Yu Y (2009) Anthropogenic contribution of magnetic particulates in urban roadside dust. Atmos Environ 43:3137–3144

    Article  Google Scholar 

  • Le Borgne E (1955) Susceptibilité magnétique anormale du sol superficiel. Ann Geophys 11:399–419

    Google Scholar 

  • Le Borgne E (1960) Influence du feu sur les propriktks magnetique du sol et sur celles du schiste et du granit. Ann Geophys 16:159–195

    Google Scholar 

  • Leonardi GS, Houthuijs D, Steerenberg PA, Fletcher T, Armstrong B, Antova T, Lochman I, Lochmanova A, Rudnai P, Erdei E, Musial J, Jazwiec-Kanyion B, Niciu EM, Durbaca S, Fabianova E, Koppova K, Lebret E, Brunekreef B, van Loveren H (2000) Immune biomarkers in relation to exposure to particulate matter: a cross-sectional survey in 17 cities of central Europe. Inhal Toxicol 12:1–14

    Article  Google Scholar 

  • Li SM, Winchester JW (1993) Aerosol silicon and associated elements in the Arctic high and mid-troposphere. Atmos Environ 27:2907–2912

    Article  Google Scholar 

  • Li X, Lee SL, Wong SC, Shi W, Thornton I (2004) The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environ Pollut 129:113–124

    Article  Google Scholar 

  • Lougheed MS (1966) A classification of extraterrestrial spherules found in sedimentary rocks and till. Ohio J Sci 66:274–283

    Google Scholar 

  • Lovley DR (1991) Magnetite formation during microbial dissimilatory iron reduction, in Frankel RB and Blakemore RP (eds); Iron Biominerals. Plenum press. New York 151–166

  • Magiera T, Strzyszcz Z, kapicka A, Petrovsky E, MAGPROX-Team (2006) Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma 130:299–311

    Article  Google Scholar 

  • Magiera T, Jablonska M, Strzyszcz Z, Rachwal M (2011) Morphological and mineralogical forms of technogenic magnetic particles in industrial dust. Atmos Environ 45:4281–4290

    Article  Google Scholar 

  • Maher BA (1986) Characterization of soils by mineral magnetic measurements. Phys Earth Planet Inter 42:76–92

    Article  Google Scholar 

  • Maier G, Scholger R (2004) Demonstration of connection between pollutant dispersal and atmospheric boundary layers by use of magnetic susceptibility mapping, St. Jacob (Austria). Phys Chem Earth 2:997–1009

    Article  Google Scholar 

  • Matzka J (1997) Magnetische, elektronenmikroskopische und lichtmikroskopische Untersuchungen an Staüben und Aschen sowie an einzelnen Aschepartikeln. Diploma thesis, University Munich, Germany

  • McLean D (1991) Magnetic spherules in recent lake sediments. Hydrobiologia 214:91–97

    Article  Google Scholar 

  • Meena NK, Maiti S, Shrivastava A (2011) Discrimination between anthropogenic (pollution) and lithogenic magnetic fraction in urban soils (Delhi, India) using environmental magnetism. J Appl Geophys 73:121–129

    Article  Google Scholar 

  • Melegy A, El-Agami NL (2004) Factors controlling the chemistry and mineralogy of selected soil types of Czech Republic and Egypt. Bull Geosci 79:71–79

    Google Scholar 

  • Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, Sandstrom T, Blomberg A, Newby DE (2009) Adverse cardiovascular effects of air pollution. Nat Clin Pract Card 6:36–44

    Article  Google Scholar 

  • Oldfield F, Thompson R, Dickson DPE (1981) Artificial magnetic enhancement of stream bedload: a hydrological application of superparamagnetism. Phys Earth Planet Inter 26:107–124

    Article  Google Scholar 

  • Olson KR, Jones RL (2001) Use of fly ash as time marker in soil erosion and sedimentation studies in “Sustaining the global farm”. Soil conserv. Org Meeting Purdue Univ 1059–1061

  • Petrovský E, Kapicka A, Jordanoa N, Knob M, Hoffmann V (2000) Lowfield magnetic susceptibility: a proxy method of estimating increased pollution of different environmental systems. Environ Geol 39:312–318

    Article  Google Scholar 

  • Pope CAIII, Dockery DW (1999) Epidemiology of particle effects. In: Holgate ST, Samet JM, Koren HS, Maynard RL (eds) Air pollution and health. Academic Press, New York, pp 673–705

    Chapter  Google Scholar 

  • Pope C, Burnett R, Thun M, Calle E, Krewski D, Ito K, Thurston G (2002) Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141

    Article  Google Scholar 

  • Powell JW, Dhunt A, Abraham JL (2002) Anthropogenic vanadium-chromium-iron and cerium-lanthanum-iron particles in settled urban house dust: cCSEM identification and analysis. Water Air Soil Poll 135:207–217

    Article  Google Scholar 

  • Rai PK (2013) Environmental magnetic studies of particulates with special reference to biomagnetic monitoring using roadside plant leaves. Atmos Environ 72:113–129

    Article  Google Scholar 

  • Rizzini A, Vessani F, Coccetta V, Milad G (1978) Stratigraphy and sedimentation of a neogene-quaternary section in the Nile Delta Area (A.R.E.). Mar Geol 27:327–348

    Article  Google Scholar 

  • Rodríguez I, Galí S, Marcos C (2009) Atmospheric inorganic aerosol of a non-industrial city in the centre of an industrial region of the North of Spain, and its possible influence on the climate on a regional scale. Environ Geol 56:1551–1561

    Article  Google Scholar 

  • Schmidt A (2009) Electrical and magnetic methods in archaeological prospection. In: Campana S, Piro S (eds) Seeing the unseen. Geophysics and landscape archaeology. Taylor and Francis Group, London, pp 67–81

    Google Scholar 

  • Schwarze PE, Øvrevik J, Lag M, Refsnes M, Nafstad P, Hetland RB, Dybing E (2006) Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Hum Exp Toxicol 25:559–579

    Article  Google Scholar 

  • Sharma AP, Tripathi BD (2008) Magnetic mapping of fly ash pollution and heavy metals from soil samples around a point source in a dry tropical environment. Environ Monit Assess 138:31–39

    Article  Google Scholar 

  • Shinggu DY, Ogugbuaja V, Barminas J, Toma I (2007) Analysis of street dust for heavy metal pollutants in Mubi, Adamawa State, Nigeria. Int J Phys Sci 2:290–293

    Google Scholar 

  • Shoumkova AS (2006) Physico-chemical characterization and magnetic separation of coal fly ashes from “VARNA”, BOBOV DOL” and “MARITZA-ISTOKI” power plants, bulgariai-physico chemical characteristics. J Univ Chem Technol Met 41:175–180

    Google Scholar 

  • Silva LFO, Hower JC, Izquierdo M, Querol X (2010) Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure. Sci Total Environ 408:5117–5122

    Article  Google Scholar 

  • Škrbić B, Đurišić-Mladenović N (2007) Principal component analysis for soil contamination with organochlorine compounds. Chemosphere 68:2144–2152

    Article  Google Scholar 

  • Smith KR, Veranth JM, Lighty JS, Aust AE (1998) Mobilization of iron from coal fly ash was dependent upon the particle size and the source of coal. Chem Res Toxicol 11:1494–1500

    Article  Google Scholar 

  • Stanley DJ, Warne AG (1993) Nile Delta: recent geological evolution and human impact. Science 260:628–634

    Article  Google Scholar 

  • Strzyszcz Z, Magiera T (1998) Magnetic susceptibility and heavy metals contamination in soils of southern Poland. Phys Chem Earth 23:1127–1131

    Article  Google Scholar 

  • Umbría A, Galán MJ, Muňoz MJ, Martín M (2004) Characterization of atmospheric particles: analysis of particles in the Campo de Gibraltar. Atmosfera 17:191–206

    Google Scholar 

  • Vassilev S (1992) Phase mineralogy studies of solid waste products from coal burning at some Bulgarian thermoelectric power plants. Fuel 71:625–633

    Article  Google Scholar 

  • Vassilev S, Vassileva C (1996) Mineralogy of combustion wastes from coal-fired power stations. Fuel Process Technol 47:261–280

    Article  Google Scholar 

  • Vermylen J, Nemmar A, Nemery B, Hoylaerts MF (2005) Ambient air pollution and acute myocardial infarction. J Thromb Haemost 3:1955–1961

    Article  Google Scholar 

  • Wang XS, Qin Y (2006) Magnetic properties of urban top soils and correlation with heavy metals: case study from the city of Xuzhou, China. Environ Geol 49:897–903

    Article  Google Scholar 

  • Wang W, Huang MJ, Kang Y, Wang HS, Leung AOW, Cheung KC, Wong MH (2011) Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Sci Total Environ 409:4519–4527

    Article  Google Scholar 

  • Wang B, Xia DS, Yu Y, Jia J, Xu SJ (2014) Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China. Environ Pollut 184:335–346

    Article  Google Scholar 

  • Wik M, Renberg I (1987) Distribution in forest soils of carbonaceous particles from fossil fuel combustion. Water Air Soil Pollut 33:127–129

    Google Scholar 

  • Williams L, Ulrich CM, Larson T et al (2011) Fine particulate matter (PM2.5) air pollution and immune status among women in the Seattle area. Arch Environ Occup Health 66:155–165

    Article  Google Scholar 

  • Xia D, Wang B, Yu Y, Jia J, Nie Y, Wang X, Xu S (2014) Combination of magnetic parameters and heavy metals to discriminate soil-contamination sources in Yinchuan—a typical oasis city of Northwestern China. Sci Total Environ 485:83–92

    Article  Google Scholar 

  • Xie RK, Seip HM, Leinum JR, Winje T, Xiao JS (2005) Chemical characterization of individual particles (PM10) from ambient air in Guiyang city, China. Sci Total Environ 343:261–272

    Article  Google Scholar 

  • Yang T, Liu QS, Chan LS, Liu ZD (2007) Magnetic signature of heavy metals pollution of sediments: case study from the East Lake in Wuhan, China. Environ Geol 52:1639–1650

    Article  Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges a grant by the Egyptian mission (Higher Education Ministry) during his stay at the FAU in Germany. The staff at GZN and Dr. Jürgen Göske (Zentrum für Werkstoffanalytik, Lauf) is thanked for their assistance in laboratory work. K. Christenson is thanked for the language revision. We thank two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atef M. Abu Khatita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Khatita, A.M., de Wall, H. & Koch, R. Anthropogenic particle dispersions in topsoils of the Middle Nile Delta: a preliminary study on the contamination around industrial and commercial areas in Egypt. Environ Earth Sci 75, 264 (2016). https://doi.org/10.1007/s12665-015-5050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5050-y

Keywords

Navigation