Skip to main content
Log in

The potential of major ion chemistry to assess groundwater vulnerability of a regional aquifer in southern Quebec (Canada)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Groundwater vulnerability mapping provides useful but limited information for developing protection plans of the resource. Classical vulnerability ranking methods often do not take into account complex hydrostratigraphy and never consider groundwater flow dynamics. The objective of this work was to test the potential of major ion chemistry to assess regional-scale intrinsic groundwater vulnerability. Because it reflects water–sediment and water–rock interactions, the new vulnerability index reflects both infiltration processes and groundwater hydrodynamics. The method was applied on a regional fractured bedrock aquifer located in the Becancour region of southern Quebec (Canada). In this region, hydrogeochemistry shows that freshly recharged groundwater evolves from (Ca, Mg)–HCO3 and Ca–SO4 to Na–HCO3 type with gradually increasing confinement conditions in the fractured aquifer and tends to Na–Cl type locally by mixing with trapped marine pore-water. The new method identified recharge areas as those of the highest vulnerability and gradually decreasing vulnerability as confinement of the aquifer increased. It also highlights local discontinuities in confinement that differ from the regional pattern. Results showed a good correlation between groundwater vulnerability estimated with the new method and nitrate occurrence in groundwater. Eighty-two per cent of all samples presenting detectable nitrate concentrations were characterized by a Hydrogeochemical Vulnerability Index greater than 9 (maximum is 10). The ability of the new vulnerability method to identify areas vulnerable to detectable nitrate concentrations was much higher than that deriving from the DRASTIC method. This work confirms that major ions chemistry contains significant information about groundwater vulnerability and could be used to improve groundwater resource management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aller L, Bennett T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings. EPA-600/2-87-035, 20 p

  • Andrade AIASS, Stigter TY (2009) Multi-method assessment of nitrates and pesticides contamination in shallow alluvial groundwater as a function of hydrogeologic setting and land use. Agric Water Manag 96:1751–1765

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema Publishers, Leiden

    Book  Google Scholar 

  • Barbecot F, Marlin C, Gibert E, Dever L (2000) Hydrochemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France). Appl Geochem 15(6):791–805

    Article  Google Scholar 

  • Beaudry C (2013) Hydrogéochimie de l’aquifère rocheux régional en Montérégie est, Québec. MSc thesis, INRS-ETE, Université du Québec, Québec, Canada, 210 p. Access to the geochemical dataset online: http://sdis.inrs.ca/ (in French)

  • Benoit N, Nastev M, Blanchette D, Molson J (2014) Hydrogeology and hydrogeochemistry of the Chaudière River watershed aquifers, Quebec, Canada. Can Water Resour J 39(1):32–48

    Article  Google Scholar 

  • Böhlke JK, Wanty R, Tuttle M, Delin G, Landon M (2002) Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota. Water Resour Res 38:7. doi:10.1029/2001WR000663

    Google Scholar 

  • Bojórquez-Tapia A, Cruz-Bello GM, Luna-González L, Juárez L, Ortiz-Pérez MA (2009) V-DRASTIC: using visualization to engage policymakers in groundwater vulnerability assessment. J Hydrol 373:242–255

    Article  Google Scholar 

  • Carrier MA, Lefebvre R, Rivard C, Parent M, Ballard JM, Benoit N, Vigneault H, Beaudry C, Malet X, Laurencelle M, Gosselin JS, Ladevèze P, Thériault R, Beaudin I, Michaud A, Pugin A, Morin R, Crow H, Gloaguen E, Bleser J, Martin A, Lavoie D (2013) Portrait des ressources en eau souterraine en Montérégie Est, Québec, Canada. Projet réalisé conjointement par l’INRS, la CGC, l’OBV Yamaska et l’IRDA dans le cadre du Programme d’acquisition de connaissances sur les eaux souterraines, rapport final INRS R-1433, soumis en juin 2013, 312 p. (in French)

  • CEAEQ (Centre d’expertise en analyse environnementale du Québec) (2014) Les méthodes d’analyses en usage au Centre d’expertise en analyse environnementale. On-line: http://www.ceaeq.gouv.qc.ca/methodes/methode_index.htm

  • Champagne L (1990) Vulnérabilité des eaux souterraines à la pollution: M.R.C. de Montcalm. MSc thesis, Université de Montréal, Québec, Canada, 80 p (in French)

  • Charron JE (1978) Hydrogeochemical study of groundwater flow in the interstream area between the Ottawa and St. Lawrence Rivers. Environment Canada, Water Resource Branch, Scientific series No. 76, 45 p

  • Chen SK, Jang CS, Peng YP (2013) Developing a probability-based model of aquifer vulnerability in an agricultural region. J Hydrol 486:494–504

    Article  Google Scholar 

  • Chowdhury SH, Kehew AE, Passero RN (2003) Correlation between nitrates contamination and groundwater pollution potential. Groundwater 41:735–745

    Article  Google Scholar 

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313

    Article  Google Scholar 

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2010) Desalination of a sedimentary rock aquifer system invaded by Pleistocene Champlain Sea water and processes controlling groundwater geochemistry. Environ Earth Sci 59:977–994

    Article  Google Scholar 

  • Dubrovsky NM, Burow KR, Clark GM, Gronberg JM, Hamilton PA, Hitt KJ, Mueller DK, Munn MD, Nolan BT, Puckett LJ, Rupert MG, Short TM, Spahr NE, Sprague LA, Wilber WG (2010) The quality of our Nation’s waters—nutrients in the Nation’s streams and groundwater, 1992–2004. U.S. Geological Survey Circular, vol 1350, 174 p

  • Edmunds WM, Cook JM, Darling WG, Kinniburgh DG, Miles DL, Bath AH, Morganjones M, Andrews JN (1987) Baseline geochemical conditions in the Chalk aquifer, Berkshire, U.K: a basis for groundwater quality management. Appl Geochem 2:251–274

    Article  Google Scholar 

  • Edmunds WM, Shand P, Hart P, Ward RS (2003) The natural (baseline) quality of groundwater: a UK pilot study. Sci Total Environ 310:25–35

    Article  Google Scholar 

  • Environment Canada (2012) Canadian climate normals 1971–2000 for Laurierville, Québec. http://climate.weather.gc.ca/climate_normals/index_e.html

  • EPA (Environmental Protection Agency) (1993) A review of methods for assessing aquifer sensitivity and groundwater vulnerability to pesticide contamination. EPA-813-R-93002, 147 p

  • Frind EO, Molson JW, Rudolph DL (2006) Well vulnerability: a quantitative approach for source water protection. Groundwater 44:732–742

    Google Scholar 

  • Globensky Y (1987) Géologie des Basses-Terres du Saint-Laurent, Québec. Ministère des Richesses Naturelles du Québec 63 (v. MM 85-02) (in French)

  • Globensky Y (1993) Lexique stratigraphique canadien. Volume V-B: région des Appalaches, des Basses-Terres du Saint-Laurent et des Iles de la Madeleine. Ministère de l’Énergie et des Ressources et Direction Générale de l’Exploration géologique et minérale, p. 327, DV 91e23 (in French)

  • Godbout PM, Lamothe M, Horoi V, Caron O (2011) Synthèse stratigraphique, cartographie des dépôts quaternaires et modèle hydrostratigraphique régional, secteur de Bécancour, Québec: Rapport final. Report presented to the Ministère des Ressources naturelles, 37 p (in French)

  • IRDA (Institut de recherche et de développement en agroenvironnement) (2012) Feuillets pédologiques numériques 1:20000: 21L12, 21L06, 21L05, 21L04, 21L03, 31I09, 31I08, 31I07, 31I02, 31I01

  • Korom SF (1992) Natural denitrification in the saturated zone: a review. Water Resour Res 28:1657–1668

    Article  Google Scholar 

  • Kozuskanich JC, Novakowski KS, Anderson BC, Crowe AS, Balakrishnan YK (2014) Anthropogenic impacts on a bedrock aquifer at the village scale. Groundwater 52:474–486

    Article  Google Scholar 

  • Lamothe M (1989) A new framework for the Pleistocene stratigraphy of the central St. Lawrence Lowland, southern Quebec. Géogr Phys Quart 43:119–129

    Google Scholar 

  • Larocque M, Gagné S, Tremblay L, Meyzonnat G (2013) Projet de connaissance des eaux souterraines du bassin versant de la rivière Becancour et de la MRC de Becancour—Rapport scientifique. Report submitted to the Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs, 213 p (in French)

  • Larocque M, Gagné S, Barnetche D, Meyzonnat G, Graveline MH, Ouellet MA (2015) Projet de connaissance des eaux souterraines du bassin versant de la zone Nicolet et de la partie basse de la zone Saint-François. Rapport scientifique. Report submitted to the Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, 260 p (in French)

  • Mansoor A, Baloch MA, Sahar L (2014) Development of a watershed-based geospatial groundwater specific vulnerability assessment tool. Groundwater 52:137–147

    Article  Google Scholar 

  • McMahon PB, Böhlke JK, Christenson SC (2004) Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA. Appl Geochem 19:1655–1686

    Article  Google Scholar 

  • McMahon PB, Böhlke JK, Kauffman LJ, Kipp KL, Landon MK, Crandall CA, Burow KR, Brown CJ (2008) Source and transport controls on the movement of nitrate to public supply wells in selected principal aquifers of the United States. Water Resour Res 44:W04401. doi:10.1029/2007WR006252

    Google Scholar 

  • MDDEFP (Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs) (2013) Règlement sur la qualité de l’eau potable. c. Q-2, r. 40. http://www2.publicationsduquebec.gouv.qc.ca/ (in French)

  • Mehnert E, Keefer DA, Dey WS, Wehrmann HA, Wilson SD, Ray C (2005) Aquifer sensitivity to pesticide leaching: testing a soil and hydrogeologic index method. Groundw Monit Remediat 25:60–67

    Article  Google Scholar 

  • Mendizabal I, Stuyfzand PJ (2011) Quantifying the vulnerability of well fields towards anthropogenic pollution: The Netherlands as an example. J Hydrol 398:260–276

    Article  Google Scholar 

  • MENV (Ministère de l’Environnement) (2004) Étude de la qualité de l’eau potable dans sept bassins versants en surplus de fumier et impacts potentiels sur la santé. Ministère de l’Environnement du Québec, Québec, Canada, Envirodoq ENV/2004/0312, 137 p (in French)

  • MRNF (Ministère des Ressources naturelles et de la Faune) (2008) Digital elevation model 1:20000, 21L12, 21L06, 21L05, 21L04, 21L03, 31I09, 31I08, 31I07, 31I02, 31I01. Ministère des Ressources naturelles et de la Faune

  • Murat V (2000) Étude comparative des méthodes d’évaluation de la vulnérabilité intrinsèque des aquifères à la pollution: application aux aquifères granulaires du piémont Laurentien. MSc thesis, INRS-ETE, Université du Québec, Québec, Canada, 291 p (in French)

  • Nobre RCM, Filho OCR, Mansur WJ, Consenza CAN (2007) Groundwater vulnerability and risk mapping using GIS modeling and and a fuzzy logic tool. J Contam Hydrol 94:277–292

    Article  Google Scholar 

  • Qi Z, Helmers MJ, Christianson RD, Pederson CH (2011) Nitrate-nitrogen losses through subsurface drainage under various agricultural land covers. J Environ Qual 40:1578–1585

    Article  Google Scholar 

  • Rodriguez-Galiano V, Mendes MP, Garcia-Soldado MJ, Chica-Olmo M, Ribeiro L (2014) Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Sci Total Environ 476–477:189–206

    Article  Google Scholar 

  • Rupert MG (2001) Calibration of the DRASTIC groundwater vulnerability mapping method. Groundwater 39:625–630

    Article  Google Scholar 

  • Saeedi M, Abessi O, Sharifi F, Meraji H (2009) Development of groundwater quality index. Environ Monit Assess 163:327–335

    Article  Google Scholar 

  • Saidi S, Bouri S, Ben Dhia H (2010) Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ Earth Sci 59:1579–1588

    Article  Google Scholar 

  • Saxena V, Ahmed S (2001) Dissolution of fluoride in groundwater: a water-rock inter-action study. Env Geology 40:1084–1087

    Article  Google Scholar 

  • Sorichetta A, Ballabio C, Masetti M, Robinson GR, Sterlacchini S (2013) A comparison of data-driven groundwater vulnerability assessment methods. Groundwater 51:866–879

    Article  Google Scholar 

  • Stigter TY, Ribeiro L, Carvalho Dill AMM (2008) Building factorial regression models to explain and predict nitrates concentrations in groundwater under agricultural land. J Hydrol 357:42–56

    Article  Google Scholar 

  • Stuart ME, Chilton PJ, Kinniburgh DG, Cooper DM (2007) Screening for long-term trends in groundwater nitrate monitoring data. Q J Eng Geol Hydrogeol 40:361–376

    Article  Google Scholar 

  • Tilahun K, Merket BJ (2010) Assessment of groundwater vulnerability to pollution in Dire Dawa, Ethiopia using DRASTIC. Environ Earth Sci 59:1485–1496

    Article  Google Scholar 

  • United Nations Environment Programme (2003) Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management, ISBN: 92-807-2297-2, 140 p

  • US Environmental Protection Agency (2005) Factoids: drinking water and ground water statistics for 2004. EPA 816-K-05-001, 15 p

  • Van Stempvoort D, Ewert L, Wassenaar L (1992) AVI: a method for groundwater protection mapping in the Prairie. Provinces of Canada, Prairie Provinces Water Board Report No. 114

  • Vrba J, Zoporozec A (1994) Guidebook on mapping groundwater vulnerability. IAH International Contribution for Hydrogeology, Hannover, Germany, 160 p

  • Yu C, Yao Y, Cao G, Zheng C (2014) A field demonstration of groundwater vulnerability assessment using transport modeling and groundwater age modeling, Beijing Plain, China. Environ Earth Sci. doi:10.1007/s12665-014-3769-5

    Google Scholar 

  • Zhou J, Li Q, Guo Y, Guo X, Li X, Zhao Y, Jia R (2012) VLDA model and its application in assessing phreatic groundwater vulnerability: a case study of phreatic groundwater in the plain area of Yanji County, Xinjiang, China. Environ Earth Sci 67:1789–1799

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank an anonymous reviewer for his careful review and suggestions that greatly improved the manuscript. The authors thank the Quebec Ministry of Environment (Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques), the Becancour River Watershed organization (organisme de bassin versant GROBEC) and the municipalities that have participated in financing and supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Larocque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyzonnat, G., Larocque, M., Barbecot, F. et al. The potential of major ion chemistry to assess groundwater vulnerability of a regional aquifer in southern Quebec (Canada). Environ Earth Sci 75, 68 (2016). https://doi.org/10.1007/s12665-015-4793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4793-9

Keywords

Navigation