Skip to main content
Log in

A comprehensive assessment of MODIS-derived GPP for forest ecosystems using the site-level FLUXNET database

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Accurate and continuous monitoring of forest production is critical for quantifying the dynamics of regional-to-global carbon cycles. MOD17A2 provides high frequency observations of terrestrial gross primary productivity (GPP) and is widely used to evaluate the spatiotemporal variability and responses to changing climate. However, the effectiveness of the Moderate Resolution Imaging Spectroradiometer (MODIS) in measuring GPP is directly constrained by the large uncertainties in the modeling process, specifically for complicated and extensive forest ecosystems. Although there have been plenty of studies to verify the MODIS GPP product with ground-based measurements covering a range of biome types, few have comprehensively validated the performance of MODIS estimates (C5.5) for diverse forests. Thus, this study examined the degree of correspondence between the MODIS-derived GPP and the EC-measured GPP at seasonal and interannual time scales for the main forest ecosystems, encompassing evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), and mixed forest (MF) relying on 16 flux towers with a total dataset of 68 site-years. Overall, the site-specific evaluation of multi-year mean annual GPP estimates indicates that the current MODIS product works more significantly for DBF and MF, less for ENF, and least for EBF. Except for the tropical forest, MODIS estimates could capture the broad trends of GPP at an 8-day time scale for the other sites. At the seasonal time scale, the highest performance was observed in ENF, followed by MF and DBF, and the least performance was observed in EBF. Trend analyses also revealed the weak performance in EBF and DBF. This study suggested that current MODIS GPP estimates still need to improve the quality of different upstream inputs in addition to the algorithm for accurately quantifying forest production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas MR, Bin AB, Abbas TR (2015) Use MODIS satellite data to study new phenomena of underground fire in the Al Ruhban oasis in Al Najaf city, Iraq. Environ Earth Sci 73(7):3475–3485. doi:10.1007/s12665-014-3632-8

    Article  Google Scholar 

  • Archibald SA, Kirton A, Van der Merwe MR, Scholes RJ, Williams CA (2009) Drivers of inter-annual variability in net ecosystem exchange in a semi-arid savanna ecosystem, South Africa. Biogeosciences 6(2):251–266. doi:10.5194/bgd-5-3221-2008

    Article  Google Scholar 

  • Aubinet M, Heinesch B, Longdoz B (2002) Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections, heterogeneity of the site and inter-annual variability. Glob Change Biol 8(11):1053–1071. doi:10.1046/j.1365-2486.2002.00529.x

    Article  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329(5993):834–838. doi:10.1126/science.1184984

    Article  Google Scholar 

  • Berbigiera P, Bonnefonda JM, Mellmann P (2001) CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agric For Meteorol 108(3):183–197. doi:10.1016/S0168-1923(01)00240-4

    Article  Google Scholar 

  • Betts AK, Zhao M, Dirmeyer PA, Beljaars ACM (2006) Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets. J Geophys Res (1984–2012). doi:10.1029/2006JD007174

    Google Scholar 

  • Blonquist J, Montzka SA, Yakir D, Desai AR, Dragoni D (2010) The potential of carbonyl sulfide as a tracer for gross primary productivity at flux tower sites. AGU Fall Meeting B21G–07

  • Carvalhais N, Reichstein M, Ciais P, Collatz GJ, Mahecha MD (2010) Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints. Glob Change Biol 16(10):2813–2829. doi:10.1111/j.1365-2486.2010.02173

    Article  Google Scholar 

  • Chasmer L, Barr A, Hopkinson C, McCaughey H, Treitz P (2009) Scaling and assessment of GPP from MODIS using a combination of airborne lidar and eddy covariance measurements over jack pine forests. Remote Sens Environ 113(1):82–93. doi:10.1016/j.rse.2008.08.009

    Article  Google Scholar 

  • Coops NC, Black TA, Jassal RPS, Trofymow JA, Morgenstern K (2007) Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand. Remote Sens Environ 107(3):385–401. doi:10.1016/j.rse.2006.09.010

    Article  Google Scholar 

  • Desai AR (2010) Climatic and phenological controls on coherent regional interannual variability of carbon dioxide flux in a heterogeneous landscape. J Geophys Res. doi:10.1029/2010JG001423

    Google Scholar 

  • Don A, Rebmann C, Kolle O, Scherer-Lorenzen M, Schulze ED (2009) Impact of afforestation- associated management changes on the carbon balance of grassland. Glob Change Biol 15(8):1990–2002. doi:10.1111/j.1365-2486.2009.01873.x

    Article  Google Scholar 

  • Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB (2011) Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob Change Biol 17(2):886–897. doi:10.1111/j.1365-2486.2010.02281.x

    Article  Google Scholar 

  • FAO (2010) Global forest resources assessment 2010. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Foody GM, Cutler ME, Mcmorrow J, Pelz D, Tangki H (2001) Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Glob Ecol Biogeogr 10(4):379–387. doi:10.1046/j.1466-822X.2001.00248.x

    Article  Google Scholar 

  • Foody GM, Boyd DS, Cutler ME (2003) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens Environ 85(4):463–474. doi:10.1016/S0034-4257(03)00039-7

    Article  Google Scholar 

  • Garbulsky MF, Peñuelas J, Papale D, Filella I (2008) Remote estimation of carbon dioxide uptake of terrestrial ecosystems. Glob Change Biol 14(12):2860–2867. doi:10.1111/j.1365-2486.2008.01684.x

    Article  Google Scholar 

  • Gebremichael M, Barros AP (2006) Evaluation of MODIS gross primary productivity (GPP) in tropical monsoon regions. Remote Sens Environ 100(2):150–166. doi:10.1016/j.rse.2005.10.009

    Article  Google Scholar 

  • Granier A, Pilegaard K, Jensen NO (2002) Similar net ecosystem exchange of beech stands located in France and Denmark. Agric For Meteorol 114(1):75–82. doi:10.1016/S0168-1923(02)00137-5

    Article  Google Scholar 

  • Grant RF, Hutyra LR, de Oliveira RC, Munger JW, Saleska SR (2009) Modeling the carbon balance of Amazonian rain forests: resolving ecological controls on net ecosystem productivity. Ecol Monogr 79(3):445–463. doi:10.1890/08-0074.1

    Article  Google Scholar 

  • Graven HD, Keeling RF, Piper SC, Patra PK, Stephens BB (2013) Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341(6150):1085–1089. doi:10.1126/science.1239207

    Article  Google Scholar 

  • Grünwald T, Bernhofer C (2007) A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. Tellus B 59(3):387–396. doi:10.1111/j.1600-0889.2007.00259.x

    Article  Google Scholar 

  • Heinsch FA, Zhao M, Running SW, Kimball JS, Nemani RR (2006) Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE T Geosci Remote 44(7):1908–1925. doi:10.1109/TGRS.2005.853936

    Article  Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT (1999) The US carbon budget: contributions from land-use change. Science 285(5427):574–578. doi:10.1126/science.285.5427.574

    Article  Google Scholar 

  • Huang CC, Li YM, Yang H, Sun DY, Yu ZY, Zhang Z, Chen X, Xu LJ (2014) Detection of algal bloom and factors influencing its formation in Taihu lake from 2000 to 2011 by MODIS. Environ Earth Sci 71(8):3705–3714. doi:10.1007/s12665-013-2764-6

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1–2):195–213. doi:10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  • Huete AR, Restrepo-Coupe N, Ratana P, Didan K, Saleska SR (2008) Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia. Agric For Meteorol 148(5):748–760. doi:10.1016/j.agrformet.2008.01.012

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ (2002) NCEP-DOE AMIP-II REANALYSIS (R-2). B Am Meteorol Soc 83(11):1631–1643. doi:10.1175/BAMS-83-11-1631

    Article  Google Scholar 

  • Kanniah KD, Beringer J, Hutley LB, Tapper NJ, Zhu X (2009) Evaluation of Collections 4 and 5 of the MODIS Gross Primary Productivity product and algorithm improvement at a tropical savanna site in northern Australia. Remote Sens Environ 113(9):1808–1822. doi:10.1016/j.rse.2009.04.013

    Article  Google Scholar 

  • Kerr RA (2011) Vital details of global warming are eluding forecasters. Science 334(6053):173–174. doi:10.1126/science.334.6053.173

    Article  Google Scholar 

  • Knohl A, Schulze ED, Kolle O, Buchmann N (2003) Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agric For Meteorol 118(3):151–167. doi:10.1016/S0168-1923(03)00115-1

    Article  Google Scholar 

  • Lagergren F, Eklundh L, Grelle A, Lundblad M, Mölder M, Lankreijer H, Lindroth A (2005) Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant Cell Environ 28(3):412–423. doi:10.1111/j.1365-3040.2004.01280.x

    Article  Google Scholar 

  • Li ZQ, Xu JC, Shilpakar R, Ma X (2014) Mapping wetland cover in the greater Himalayan region: a hybrid method combining multispectral and ecological characteristics. Environ Earth Sci 71(3):1083–1094. doi:10.1007/s12665-013-2512-y

    Article  Google Scholar 

  • Lloyd J, Taylor J (1994) On the temperature dependence of soil respiration. Funct Ecol 8(3):315–323. doi:10.2307/2389824

    Article  Google Scholar 

  • Myneni RB, Ramakrishna R, Nemani R, Running SW (1997) Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE T Geosci Remote 35(6):1380–1393. doi:10.1109/36.649788

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993. doi:10.1126/science.1201609

    Article  Google Scholar 

  • Pan S, Tian H, Dangal SR, Ouyang Z, Tao B (2014) Modeling and monitoring terrestrial primary production in a changing global environment: toward a multiscale synthesis of observation and simulation. Adv Meteorol. doi:10.1155/2014/965936

    Google Scholar 

  • Papale D, Valentini R (2003) A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob Change Biol 9(4):525–535. doi:10.1046/j.1365-2486.2003.00609.x

    Article  Google Scholar 

  • Pourtaghi ZS, Pourghasemi HR, Rossi M (2015) Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environ Earth Sci 73(4):1515–1533. doi:10.1007/s12665-014-3589-7

    Article  Google Scholar 

  • Propastin P, Ibrom A, Knohl A, Erasmi S (2012) Effects of canopy photosynthesis saturation on the estimation of gross primary productivity from MODIS data in a tropical forest. Remote Sens Environ 121(6):252–260. doi:10.1016/j.rse.2012.02.005

    Article  Google Scholar 

  • Rahman AF, Sims DA, Cordova VD, EI-Masri BZ (2005) Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophys Res Lett 32(19):L19404. doi:10.1029/2005GL024127

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11(9):1424–1439. doi:10.1111/j.1365-2486.2005.001002.x

    Article  Google Scholar 

  • Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G (2012) Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob Change Biol 18(2):566–584. doi:10.1111/j.1365-2486.2011.02562.x

    Article  Google Scholar 

  • Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54(6):547–560. doi:10.1641/0006-3568

    Article  Google Scholar 

  • Saigusa N, Yamamoto S, Hirata R, Ohtani Y, Ide R (2008) Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agric For Meteorol 148(5):700–713. doi:10.1016/j.agrformet.2007.12.006

    Article  Google Scholar 

  • Seiler TJ, Rasse DP, Li JH, Dijkstra P, Anderson HP (2009) Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of CO2 enrichment in a Florida scrub-oak ecosystem. Glob Change Biol 15(2):356–367. doi:10.1111/j.1365-2486.2008.01740.x

    Article  Google Scholar 

  • Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD (2008) A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens Environ 112(4):1633–1646. doi:10.1016/j.rse.2007.08.004

    Article  Google Scholar 

  • Sjöström M, Zhao M, Archibald S, Arneth A, Cappelaere B (2013) Evaluation of MODIS gross primary productivity for Africa using eddy covariance data. Remote Sens Environ 131(4):275–286. doi:10.1016/j.rse.2012.12.023

    Article  Google Scholar 

  • Tan B, Woodcock CE, Hu J, Zhang P, Ozdogan M (2006) The impact of gridding artifacts on the local spatial properties of MODIS data: implications for validation, compositing, and band-to-band registration across resolutions. Remote Sens Environ 105(2):98–114. doi:10.1016/j.rse.2006.06.008

    Article  Google Scholar 

  • Tang XG, Wang ZM, Xie J, Liu DW, Desai AR (2013) Monitoring the seasonal and interannual variation of the carbon sequestration in a temperate deciduous forest with MODIS time series data. For Ecol Manag 306(10):150–160. doi:10.1016/j.foreco.2013.06.032

    Article  Google Scholar 

  • Turner DP, Urbanski S, Bremer D, Wofsy SC, Meyers T (2003) A cross-biome comparison of daily light use efficiency for gross primary production. Glob Change Biol 9(3):383–395. doi:10.1046/j.1365-2486.2003.00573.x

    Article  Google Scholar 

  • Verma M, Friedl MA, Richardson AD, Kiely G, Cescatti A (2014) Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set. Biogeosciences 11(8):2185–2200. doi:10.5194/bgd-10-11627-2013

    Article  Google Scholar 

  • Wang X, Ma M, Li X, Song Y, Tan J (2013) Validation of MODIS-GPP product at 10 flux sites in northern China. Int J Remote Sens 34(2):587–599. doi:10.1080/01431161.2012.715774

    Article  Google Scholar 

  • Williams CA, Hanan NP, Baker I, Collatz GJ, Berry J (2008) Interannual variability of photosynthesis across Africa and its attribution. J Geophys Res. doi:10.1029/2008JG000718

    Google Scholar 

  • Wu CY, Munger JW, Niu Z, Kuang D (2010) Comparison of multiple models for estimating gross primary production using MODIS and eddy covariance data in Harvard Forest. Remote Sens Environ 114(12):2925–2939. doi:10.1016/j.rse.2010.07.012

    Article  Google Scholar 

  • Wu C, Chen JM, Huang N (2011) Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: evaluation and calibration. Remote Sens Environ 115(12):3424–3435. doi:10.1016/j.rse.2011.08.006

    Article  Google Scholar 

  • Xiao J, Zhuang Q, Law BE, Chen J, Baldocchi DD (2010) A continuous measure of gross primary production for the conterminous US derived from MODIS and AmeriFlux data. Remote Sens Environ 114(3):576–591. doi:10.1016/j.rse.2009.10.013

    Article  Google Scholar 

  • Yang FH, Ichii K, White MA, Hashimoto H, Michaelis AR (2007) Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through support vector machine approach. Remote Sens Environ 110(1):109–122. doi:10.1016/j.rse.2007.02.016

    Article  Google Scholar 

  • Yuan W, Liu S, Yu G, Bonnefond JM, Chen J (2010) Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens Environ 114(7):1416–1431. doi:10.1016/j.rse.2010.01.022

    Article  Google Scholar 

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329(5994):940–943. doi:10.1126/science.1192666

    Article  Google Scholar 

  • Zhao M, Running SW (2011) Response to comments on “Drought-induced reduction in global terrestrial net primary production from 2000 through 2009”. Science 333(6046):1093. doi:10.1126/science.1199169

    Article  Google Scholar 

  • Zhao M, Running SW, Nemani RR (2006) Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J Geophys Res. doi:10.1029/2004JG000004

    Google Scholar 

Download references

Acknowledgments

This study was jointly supported by the “135” Key Project of Nanjing Institute of Geography and Limnology, CAS (NIGLAS2012135005), the Open Fund of State Key Laboratory of Remote Sensing Science (OFSLRSS201502), and the Natural Science Foundation of Jiangsu Province, China (BK20141058, BK20141513). We thank the principal investigators and contributors of the improved Collection 5 MODIS GPP data generated by NTSG using NCEP/DOE II reanalysis at the University of Montana. We are also grateful to the EC data sharing provided by the FLUXNET community.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuguang Tang or Hengpeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Li, H., Huang, N. et al. A comprehensive assessment of MODIS-derived GPP for forest ecosystems using the site-level FLUXNET database. Environ Earth Sci 74, 5907–5918 (2015). https://doi.org/10.1007/s12665-015-4615-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4615-0

Keywords

Navigation