Skip to main content
Log in

A quadruple-porosity model for transient production analysis of multiple-fractured horizontal wells in shale gas reservoirs

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Multiple types of pores are present in shale gas reservoirs, including organic pores of nano scale, non-organic pores, natural and hydraulic fractures. Gas flow in different types of pores is controlled by different mechanisms, and Darcy’s law is not able to describe all these processes adequately. This paper presents a “quadruple-porosity” model and corresponding analytical solutions to describe the different permeable media and simulate transient production behavior of multiple-fractured horizontal wells in shale gas reservoirs. Dimensionless transient production decline curves are plotted, and characteristic bilinear flow and linear flow periods are identified based on the analysis of type curves. Sensitivity analysis of transient production dynamics suggests that desorption of absorbed gas, Knudsen diffusive flow, gas slippage and parameters related to hydraulic fractures have significant influence on the production dynamics of a multiple-fractured horizontal well in shale gas reservoirs. The model provides insights into multiple shale gas flow mechanisms and production prediction of shale gas reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

B g :

Volume factor of shale gas, m3/sm3

c g :

Gas compressibility, Pa−1

D :

Knudsen diffusion coefficient, m2/s

L f :

Thickness of single matrix slab, m

L F :

Half-distance between hydraulic fractures, m

F :

Gas slippage factor, dimensionless

k :

Permeability, m2;

M :

Molecular weight of gas, kg/kmol

m :

Pseudo-pressure, Pa/s

N A :

Avogadro’s constant, 6.02221415 × 1026 kmol−1

p :

Pressure, Pa

p L :

Langmuir pressure, Pa

q Fsc :

Hydraulic fracture production rate under standard condition, m3/s

s :

Laplace transformation parameter

S o :

Total number of surface sites for gas adsorption

SSA:

Specific surface area, 1/m

t :

Time, s

u :

Gas flow velocity, m/s

V L :

Langmuir volume, m3/kg  

w F :

Hydraulic fracture width, m

x F :

Half-length of hydraulic fracture, m

Z :

Z-factor of real gas, dimensionless

β :

Apparent permeability coefficient, dimensionless

θ :

Proportion of pore surface occupied by gas molecules, fraction

ρ g :

Gas density, kg/m3

ρ bi :

Bulk density of shales, kg/m3

μ g :

Gas viscosity, Pa·s

\(\phi\) :

Porosity, fraction

\(\omega\) :

Storativity ratio, dimensionless

\(\lambda\) :

Interporosity flow coefficient, m2/s

D:

Dimensionless

f:

Natural fracture system

F:

Hydraulic fracture system

i:

Initial condition

k:

Organic system

m:

Non-organic system

sc:

Standard condition

t:

Total

L:

Langmuir’s constant

References

  • Al-Hussainy R, Ramey HJ, Crawford PB (1966) The flow of real gases through porous media. JPT 18(5):624–636

    Article  Google Scholar 

  • Bello RO, Wattenbarger RA (2010a) Modeling and analysis of shale gas production with a skin effect. J Can Pet Technol 49(12):37–48

    Article  Google Scholar 

  • Bello RO, Wattenbarger RA (2010) Multi-stage hydraulically fractured horizontal shale gas well rate transient analysis. SPE Paper 126754 presented at the SPE North Africa Technical Conference and Exhibition. Cairo

  • Brown GP, Dinardo A, Cheng GK, Sherwood TK (1946) The flow of gases in pipes at low pressures. J Appl Phys 17:802–813

    Article  Google Scholar 

  • Brown M, Ozkan E, Raghavan R, Kazemi H (2009) Practical solutions for pressure transient responses of fractured horizontal wells in unconventional reservoirs. SPE Reservoir Eval Eng 14(6):663–676

    Article  Google Scholar 

  • Gou Y, Zhou L, Zhao X, Hou ZM, Were P (2015) Numerical study on hydraulic fracturing in different types of georeservoirs with consideration of H2M-coupled leak-off effects. Environ Earth Sci. doi:10.1007/s12665-015-4112-5

    Google Scholar 

  • Haghshenas B, Chen S, Clarkson CR (2013) Multi-porosity multi-permeability models for shale gas reservoirs. SPE Paper 167220 presented at the Unconventional Resources Conference. Calgary

  • Hill B, Nelson CR (2000) Gas productive fractured shales: an overview and update. Gas TIP 6:4–13

    Google Scholar 

  • Javadpour F (2009) Nanopores and apparent permeability of gas flow in mudrocks (Shale and siltstone). J Can Pet Technol 48(8):16–21

    Article  Google Scholar 

  • Javadpour F, Fisher D, Unsworth M (2007) Nanoscale gas flow in shale gas sediments. J Can Pet Technol 46(10):55–61

    Article  Google Scholar 

  • Kissinger A, Helmig R, Ebigbo A, Class H, Lange T, Sauter M, Heitfeld M, Klunker J, Jahnke W (2013) Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system part 2. Environ Earth Sci 70:3855–3873. doi:10.1007/s12665-013-2578-6

    Article  Google Scholar 

  • Lange T, Sauter M, Heitfeld M, Schetelig K, Brosig K, Jahnke W, Kissinger A, Helmig R, Ebigbo A, Class H (2013) Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system part 1. Environ Earth Sci 70:3839–3853. doi:10.1007/s12665-013-2803-3

    Article  Google Scholar 

  • Medeiors F, Ozkan E, Kazemi H (2008) Productivity and drainage area of fractured horizontal wells in tight gas reservoirs. SPE Reservoir Eval Eng 11(5):902–911

    Article  Google Scholar 

  • Nie HK, Zhang JC (2010) Shale gas reservoir distribution geological law, characteristics and suggestions. J Cent South Univers 41(2):700–707

    Google Scholar 

  • Reed RM, John A, Katherine G (2007) Nanopores in the Mississippian Barnett shale: Distribution, morphology, and possible genesis. GAS Annual Meeting & Exposition. Denver

  • Shabro V, Torres-Verdin C, Javadpour F (2011) Numerical simulation of shale-gas production: from pore-scale modeling of slip-flow, Knudsen diffusion and Langmuir desorption to reservoir modeling of compressible fluid. SPE Paper 144355 presented at the SPE North American Unconventional Conference and Exhibition. Woodlands

  • Stalgorova E, Mattar L (2012) Practical analytical model to simulate production of horizontal wells with branch fractures. SPE Paper 162515 presented at the SPE Canadian Unconventional Resources Conference, Calgary. Alberta

  • Stalgorova E, Mattar L (2013) Analytical model for unconventional multifractured composite systems. SPE Reservoir Eval Eng 16(3):246–256

    Article  Google Scholar 

  • Stehfest H (1970) Numerical inversion of Laplace transforms. Comm ACM 13:47–49

    Article  Google Scholar 

  • Swami V, Settari A (2012) A pore scale flow model for shale gas reservoir. SPE Paper 155756 presented at the Americas Unconventional Resources Conference. Pittsburgh, Pennsylvania

  • Van-Everdingen AF, Hurst W (1949) The application of the Laplace transformation to flow problem in reservoirs. J Petrol Technol 1(12):305–324

    Article  Google Scholar 

  • Wang HT (2014) Performance of multiple fractured horizontal wells in shale gas reservoirs with consideration of multiple mechanisms. J Hydrol 510:299–312

    Article  Google Scholar 

  • Zeng FH, Zhao G (2007) Gas well production analysis with non-Darcy flow and real-gas PVT behavior. J Petrol Sci Eng 59:169–182

    Article  Google Scholar 

  • Zeng FH, Zhao G (2010) The optimal hydraulic fracture geometry under non-Darcy flow effects. J Petrol Sci Eng 72:143–157

    Article  Google Scholar 

  • Zhao JZ, Liu CY, Yang H, Li YM (2015) Strategic questions about China’s shale gas development. Environ Earth Sci. doi:10.1007/s12665-015-4092-5

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support provided by the National Science Fund for Distinguished Young Scholars of China (Grant No. 51125019) and the National Natural Science Foundation of China (Grant No. 51404206; 51304165). The authors would also like to thank the reviewers and editors for their constructive suggestions, which helped in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Guo or Liehui Zhang.

Appendices

Appendix A: non-organic system solution

The Laplace transformation of the dimensionless governing equation of non-organic system, i.e., Eq. (27), yields the following equation in the Laplace domain:

$$\frac{{\partial^{2} \overline{m}_{\text{mD}} }}{{\partial z_{\text{D}}^{ 2} }} = \frac{{3s\omega_{\text{m}} }}{{\lambda_{\text{mf}} \beta_{\text{m}} }}\overline{m}_{\text{mD}}$$
(49)

Corresponding dimensionless boundary conditions, i.e., Eqs. (29) and (30), can also be transformed into the Laplace domain:

$$\left. {\frac{{\partial \overline{m}_{\text{mD}} }}{{\partial z_{\text{D}} }}} \right|_{{z_{\text{D}} = 0}} = 0$$
(50)
$$\left. {\overline{m}_{\text{mD}} } \right|_{{z_{\text{D}} = 1}} = \overline{m}_{\text{fD}}$$
(51)

Equation (49) together with Eqs. (50) and (51) compose a boundary value problem, and the general solution of Eq.(49) can be obtained as follows:

$$\bar{m}_{\text{mD}} = A_{1} \cosh \left( {z_{\text{D}} \sqrt {\frac{{3s\omega_{\text{m}} }}{{\lambda_{\text{mf}} \beta_{\text{m}} }}} } \right) + B_{1} \sinh \left( {z_{\text{D}} \sqrt {\frac{{3s\omega_{\text{m}} }}{{\lambda_{\text{mf}} \beta_{\text{m}} }}} } \right)$$
(52)

where A 1 and B 1 are coefficients which can be determined with corresponding boundary conditions of non-organic system.

Taking derivative of Eq. (52) with respect to z D and substituting it into Eq. (50), the coefficient B 1 can be obtained as follows:

$$B_{1} = 0$$
(53)

Using the boundary condition given by Eq. (51), the coefficient A 1 can be obtained as follows:

$$A_{1} = \frac{{\overline{m}_{\text{fD}} }}{{\cosh \left( {\sqrt {\frac{{3s\omega_{\text{m}} }}{{\lambda_{\text{mf}} \beta_{\text{m}} }}} } \right)}}$$
(54)

The final solution of the dimensionless mathematical model for non-organic system thus can be obtained by substituting Eqs. (53) and (54) into Eq. (52):

$$\bar{m}_{\text{mD}} = \frac{{\cosh \left( {z_{\text{D}} \sqrt {\frac{{3s\omega_{\text{m}} }}{{\lambda_{\text{mf}} \beta_{\text{m}} }}} } \right)}}{{\cosh \left( {\sqrt {\frac{{3s\omega_{\text{m}} }}{{\lambda_{\text{mf}} \beta_{\text{m}} }}} } \right)}}\bar{m}_{\text{fD}}$$
(55)

Appendix B: organic system solution

The Laplace transformation of the dimensionless governing equation of organic system, i.e., Eq. (31), yields the following equation in the Laplace domain:

$$\frac{{\partial^{2} \bar{m}_{\text{kD}} }}{{\partial z_{\text{D}}^{ 2} }} = \frac{{3s\omega_{\text{k}} }}{{\lambda_{\text{kf}} \beta_{\text{k}} }}\left( {1 + \sigma_{\text{k}} } \right)\overline{m}_{\text{kD}}$$
(56)

Corresponding dimensionless boundary conditions, i.e., Eqs. (33) and (34), can also be transformed into the Laplace domain:

$$\left. {\frac{{\partial \bar{m}_{\text{kD}} }}{{\partial z_{\text{D}} }}} \right|_{{z_{\text{D}} = 0}} = 0$$
(57)
$$\left. {\bar{m}_{\text{kD}} } \right|_{{z_{\text{D}} = 1}} = \bar{m}_{\text{fD}}$$
(58)

Equation (56) together with Eqs. (57) and (58) also compose a boundary value problem, and the general solution of Eq. (56) can be obtained as follows:

$$\bar{m}_{\text{kD}} = A_{2} \cosh \left( {z_{\text{D}} \sqrt {\frac{{3s\omega_{\text{k}} \left( {1 + \sigma_{\text{k}} } \right)}}{{\lambda_{\text{kf}} \beta_{\text{k}} }}} } \right) + B_{2} \sinh \left( {z_{\text{D}} \sqrt {\frac{{3s\omega_{\text{k}} \left( {1 + \sigma_{\text{k}} } \right)}}{{\lambda_{\text{kf}} \beta_{\text{k}} }}} } \right)$$
(59)

where A 2 and B 2 are coefficients which can be determined with corresponding boundary conditions of organic system.

Taking derivative of Eq. (59) with respect to z D and substituting it into Eq. (57), the coefficient B 2 can be obtained as follows:

$$B_{2} = 0$$
(60)

With the boundary condition given by Eq. (58), the coefficient A 2 can be obtained as follows:

$$A_{2} = \frac{{\bar{m}_{\text{fD}} }}{{\cosh \left( {\sqrt {\frac{{3s\omega_{\text{k}} \left( {1 + \sigma_{\text{k}} } \right)}}{{\lambda_{\text{kf}} \beta_{\text{k}} }}} } \right)}}$$
(61)

The final solution of the dimensionless mathematical model for organic system thus can be obtained by substituting Eqs. (60) and (61) into Eq. (59):

$$\bar{m}_{\text{kD}} = \frac{{\cosh \left( {z_{\text{D}} \sqrt {\frac{{3s\omega_{\text{k}} \left( {1 + \sigma_{\text{k}} } \right)}}{{\lambda_{\text{kf}} \beta_{\text{k}} }}} } \right)}}{{\cosh \left( {\sqrt {\frac{{3s\omega_{\text{k}} \left( {1 + \sigma_{\text{k}} } \right)}}{{\lambda_{\text{kf}} \beta_{\text{k}} }}} } \right)}}\bar{m}_{\text{fD}}$$
(62)

Appendix C: natural fracture system solution

The Laplace transformation of the dimensionless governing equation of natural fracture system, i.e., Eq. (35), yields the following equation in the Laplace domain:

$$\frac{{\partial^{2} \bar{m}_{\text{fD}} }}{{\partial y_{\text{D}}^{ 2} }} = s\omega_{\text{f}} \bar{m}_{\text{fD}} + \frac{{\lambda_{\text{mf}} \beta_{\text{m}} }}{3}\left. {\frac{{\partial \bar{m}_{\text{mD}} }}{{\partial z_{\text{D}} }}} \right|_{{z_{\text{D}} = 1}} + \frac{{\lambda_{\text{kf}} \beta_{\text{k}} }}{3}\left. {\frac{{\partial \bar{m}_{\text{kD}} }}{{\partial z_{\text{D}} }}} \right|_{{z_{\text{D}} = 1}}$$
(63)

Taking derivatives of Eqs. (55) and (62) with respect to z D and setting z D equal to 1, we can obtain the following equations:

$$\left. {\frac{{\partial \bar{m}_{\text{mD}} }}{{\partial z_{\text{D}} }}} \right|_{{z_{\text{D}} = 1}} = \frac{{\sqrt {\frac{{3s\omega_{\text{m}} }}{{\lambda_{\text{mf}} \beta_{\text{m}} }}} \sinh \left( {\sqrt {\frac{{3s\omega_{\text{m}} }}{{\lambda_{\text{mf}} \beta_{\text{m}} }}} } \right)}}{{\cosh \left( {\sqrt {\frac{{3s\omega_{\text{m}} }}{{\lambda_{\text{mf}} \beta_{\text{m}} }}} } \right)}}\bar{m}_{\text{fD}}$$
(64)
$$\left. {\frac{{\partial \bar{m}_{\text{kD}} }}{{\partial z_{\text{D}} }}} \right|_{{z_{\text{D}} = 1}} = \frac{{\sqrt {\frac{{3s\omega_{\text{k}} \left( {1 + \sigma_{\text{k}} } \right)}}{{\lambda_{\text{kf}} \beta_{\text{k}} }}} \sinh \left( {\sqrt {\frac{{3s\omega_{\text{k}} \left( {1 + \sigma_{\text{k}} } \right)}}{{\lambda_{\text{kf}} \beta_{\text{k}} }}} } \right)}}{{\cosh \left( {\sqrt {\frac{{3s\omega_{\text{k}} \left( {1 + \sigma_{\text{k}} } \right)}}{{\lambda_{\text{kf}} \beta_{\text{k}} }}} } \right)}}\bar{m}_{\text{fD}}$$
(65)

Substitution of Eqs. (64) and (65) into Eq. (63) yields:

$$\frac{{\partial^{2} \bar{m}_{\text{fD}} }}{{\partial y_{\text{D}}^{ 2} }} - sf_{1} \left( s \right)\bar{m}_{\text{fD}} = 0$$
(66)

where \(f_{1} \left( s \right) = \omega_{\text{f}} + \frac{{\lambda_{\text{mf}} \beta_{\text{m}} }}{3s}\sqrt {\frac{{3s\omega_{\text{m}} }}{{\lambda_{\text{mf}} \beta_{\text{m}} }}} \tanh \left( {\sqrt {\frac{{3s\omega_{\text{m}} }}{{\lambda_{\text{mf}} \beta_{\text{m}} }}} } \right) + \frac{{\lambda_{\text{kf}} \beta_{\text{k}} }}{3s}\sqrt {\frac{{3s\omega_{\text{k}} \left( {1 + \sigma_{\text{k}} } \right)}}{{\lambda_{\text{kf}} \beta_{\text{k}} }}} \tanh \left( {\sqrt {\frac{{3s\omega_{\text{k}} \left( {1 + \sigma_{\text{k}} } \right)}}{{\lambda_{\text{kf}} \beta_{\text{k}} }}} } \right)\).

Corresponding dimensionless boundary conditions, i.e., Eqs. (37) and (38), can also be transformed into the Laplace domain:

$$\left. {\frac{{\partial \bar{m}_{\text{fD}} }}{{\partial y_{\text{D}} }}} \right|_{{y_{\text{D}} = L_{\text{FD}} /2}} = 0$$
(67)
$$\left. {\bar{m}_{\text{fD}} } \right|_{{y_{\text{D}} = w_{\text{FD}} /2}} = \bar{m}_{\text{FD}}$$
(68)

The general solution of Eq. (66) is:

$$\bar{m}_{\text{fD}} = A_{3} \cosh \left( {y_{\text{D}} \sqrt {sf_{1} \left( s \right)} } \right) + B_{3} \sinh \left( {y_{\text{D}} \sqrt {sf_{1} \left( s \right)} } \right)$$
(69)

where A 3 and B 3 are coefficients which can be later determined with corresponding boundary conditions of natural fracture system.

Similarly, taking derivative of Eq. (69) with respect to y D and substituting it into Eq. (67), we can obtain the following equation:

$$A_{3} \sqrt {sf_{1} \left( s \right)} \sinh \left( {\frac{{L_{\text{FD}} }}{2}\sqrt {sf_{1} \left( s \right)} } \right) + B_{3} \sqrt {sf_{1} \left( s \right)} \cosh \left( {\frac{{L_{\text{FD}} }}{2}\sqrt {sf_{1} \left( s \right)} } \right) = 0$$
(70)

Substitution of Eq. (69) into the Eq. (68) yields:

$$A_{3} \cosh \left( {\frac{{w_{\text{FD}} }}{2}\sqrt {sf_{1} \left( s \right)} } \right) + B_{3} \sinh \left( {\frac{{w_{\text{FD}} }}{2}\sqrt {sf_{1} \left( s \right)} } \right) = \bar{m}_{\text{FD}}$$
(71)

The coefficients A 3 and B 3 can be determined by solving Eqs. (70) and (71) simultaneously:

$$A_{3} = \bar{m}_{\text{FD}} \frac{{\cosh \left( {\frac{{L_{\text{FD}} }}{2}\sqrt {sf_{1} \left( s \right)} } \right)}}{{\cosh \left[ {\left( {\frac{{L_{\text{FD}} - w_{\text{FD}} }}{2}} \right)\sqrt {sf_{1} \left( s \right)} } \right]}}$$
(72)
$$B_{3} = - \bar{m}_{\text{FD}} \frac{{\sinh \left( {\frac{{L_{\text{FD}} }}{2}\sqrt {sf_{1} \left( s \right)} } \right)}}{{\cosh \left[ {\left( {\frac{{L_{\text{FD}} - w_{\text{FD}} }}{2}} \right)\sqrt {sf_{1} \left( s \right)} } \right]}}$$
(73)

The final solution of the dimensionless mathematical model for natural fracture system thus can be obtained by substituting Eqs. (72) and (73) into Eq. (69):

$$\bar{m}_{\text{fD}} = \bar{m}_{\text{FD}} \frac{{\cosh \left[ {\left( {\frac{{L_{\text{FD}} }}{2} - y_{\text{D}} } \right)\sqrt {sf_{1} \left( s \right)} } \right]}}{{\cosh \left[ {\left( {\frac{{L_{\text{FD}} - w_{\text{FD}} }}{2}} \right)\sqrt {sf_{1} \left( s \right)} } \right]}}$$
(74)

Appendix D: hydraulic fracture system solution

The Laplace transformation of the dimensionless governing equation of hydraulic fracture system, i.e., Eq. (39), yields the following equation in the Laplace domain:

$$\frac{{\partial^{2} \bar{m}_{\text{FD}} }}{{\partial x_{\text{D}}^{ 2} }} + \frac{2}{{C_{\text{FD}} }}\left. {\frac{{\partial \bar{m}_{\text{fD}} }}{{\partial y_{\text{D}} }}} \right|_{{y_{\text{D}} = w_{\text{FD}} /2}} = \frac{{s\omega_{\text{f}} }}{{\eta_{\text{D}} }}\bar{m}_{\text{FD}}$$
(75)

Taking derivative of Eq. (74) with respect to y D and setting y D equal to w FD/2, we can obtain the following equations:

$$\left. {\frac{{\partial \bar{m}_{fD} }}{{\partial y_{\text{D}} }}} \right|_{{y_{\text{D}} = w_{{{\text{FD}}/2}} }} = - \bar{m}_{\text{FD}} \sqrt {sf_{1} \left( s \right)} \tanh \left[ {\left( {\frac{{L_{\text{FD}} - w_{\text{FD}} }}{2}} \right)\sqrt {sf_{1} \left( s \right)} } \right]$$
(76)

Substitution of Eq. (76) into Eq. (75) yields:

$$\frac{{\partial^{2} \bar{m}_{\text{FD}} }}{{\partial x_{\text{D}}^{ 2} }} = sf_{2} \left( s \right)\bar{m}_{\text{FD}}$$
(77)

where \(f_{2} \left( s \right) = \left\{ {\frac{{\omega_{f} }}{{\eta_{D} }} + \frac{{2\sqrt {sf_{1} \left( s \right)} }}{{sC_{FD} }}\tanh \left[ {\left( {\frac{{L_{FD} - w_{FD} }}{2}} \right)\sqrt {sf_{1} \left( s \right)} } \right]} \right\}\).

Corresponding dimensionless boundary conditions, i.e., Eqs. (41) and (42), can also be transformed into the Laplace domain:

$$\left. {\frac{{\partial \bar{m}_{{F{\text{D}}}} }}{{\partial x_{\text{D}} }}} \right|_{{x_{\text{D}} = 0}} = - \frac{\pi }{{sC_{\text{FD}} }}$$
(78)
$$\left. {\frac{{\partial \bar{m}_{\text{FD}} }}{{\partial x_{\text{D}} }}} \right|_{{x_{\text{D}} = 1}} = 0$$
(79)

The general solution of Eq. (77) can be obtained as follows:

$$\bar{m}_{\text{FD}} = A_{4} \cosh \left( {x_{\text{D}} \sqrt {sf_{2} \left( s \right)} } \right) + B_{4} \sinh \left( {x_{\text{D}} \sqrt {sf_{2} \left( s \right)} } \right)$$
(80)

where A 4 and B 4 are coefficients which can be later determined with corresponding boundary conditions of hydraulic fracture system.

Taking derivative of Eq. (80) with respect to x D, and we can obtain:

$$\frac{{\partial \bar{m}_{\text{FD}} }}{{\partial x_{\text{D}} }} = A_{4} \sqrt {sf_{2} \left( s \right)} \sinh \left( {x_{\text{D}} \sqrt {sf_{2} \left( s \right)} } \right) + B_{4} \sqrt {sf_{2} \left( s \right)} \cosh \left( {x_{\text{D}} \sqrt {sf_{2} \left( s \right)} } \right)$$
(81)

Substitution of Eq. (81) into Eq. (78) yields:

$$B_{4} \sqrt {sf_{2} \left( s \right)} = - \frac{\pi }{{sC_{\text{FD}} }}$$
(82)

Thus we can get:

$$B_{4} = - \frac{\pi }{{s\sqrt {sf_{2} \left( s \right)} C_{\text{FD}} }}$$
(83)

Substitution of Eqs. (81) and (83) into Eq. (79) yields:

$$A_{4} \sinh \left( {\sqrt {sf_{2} \left( s \right)} } \right) - \frac{\pi }{{s\sqrt {sf_{2} \left( s \right)} C_{\text{FD}} }}\cosh \left( {\sqrt {sf_{2} \left( s \right)} } \right) = 0$$
(84)

Thus we can get:

$$A_{4} = \frac{\pi }{{C_{\text{FD}} }}\frac{1}{{s\sqrt {sf_{2} \left( s \right)} }}\coth \left( {\sqrt {sf_{2} \left( s \right)} } \right)$$
(85)

Then the dimensionless pressure response for hydraulic fracture system is obtained to be:

$$\bar{m}_{\text{FD}} = \frac{\pi }{{C_{\text{FD}} }}\frac{1}{{s\sqrt {sf_{2} \left( s \right)} }}\left[ {\coth \left( {\sqrt {sf_{2} \left( s \right)} } \right)\cosh \left( {x_{\text{D}} \sqrt {sf_{2} \left( s \right)} } \right) - \sinh \left( {x_{\text{D}} \sqrt {sf_{2} \left( s \right)} } \right)} \right]$$
(86)

After some mathematical manipulations, Eq. (86) can be rewritten as:

$$\bar{m}_{\text{FD}} = \frac{\pi }{{C_{\text{FD}} }}\frac{1}{{s\sqrt {sf_{2} \left( s \right)} }}\frac{{\cosh \left[ {\left( {x_{\text{D}} - 1} \right)\sqrt {sf_{2} \left( s \right)} } \right]}}{{\sinh \left( {\sqrt {sf_{2} \left( s \right)} } \right)}}$$
(87)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhang, L. & Zhu, Q. A quadruple-porosity model for transient production analysis of multiple-fractured horizontal wells in shale gas reservoirs. Environ Earth Sci 73, 5917–5931 (2015). https://doi.org/10.1007/s12665-015-4368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4368-9

Keywords

Navigation