Skip to main content
Log in

Removal behavior of peat collected from Brunei Darussalam for Pb(II) ions from aqueous solution: equilibrium isotherm, thermodynamics, kinetics and regeneration studies

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Peat collected from Brunei Darussalam shows a remarkable affinity toward Pb(II). Under optimized conditions of shaking time, settling time, pH and ionic strength, more than 95 % can be removed from a 10.0 mg L−1 Pb(II) solution using 0.050 g of peat at ambient temperature of 25 ± 1 °C. Scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray fluorescence spectroscopy performed on peat samples before and after interaction with Pb(II) solution conclusively demonstrate the transfer of Pb(II) ions from the solution phase to the solid peat phase. Interaction of Pb(II) solution and peat follows pseudo-second-order kinetics and adsorption best fitted the Redlich–Peterson isotherm model. The maximum adsorption capacity (qmax) was found to be 15 mg g−1. Thermodynamic parameters evaluated for the Pb(II)—peat system indicate that the above adsorption reaction is spontaneous and endothermic. Regeneration of Pb(II)-loaded peat is effective with HCl solution and the regenerated peat can be reused for adsorption of peat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmad R (2009) Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J Hazard Mater 171:767–773

    Article  Google Scholar 

  • Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Chii YY, Siddique BM (2009) Removal of Cu(II) and Pb(II) ions from aqueous solutions by adsorption on sawdust of Meranti wood. Desalination 247:636–646

    Article  Google Scholar 

  • Al-Asheh S, Duvnjak Z (1997) Sorption of cadmium and other heavy metals by pine bark. J Hazard Mater 56:35–51

    Article  Google Scholar 

  • Annadural G, Juang RS, Lee DJ (2002) Adsorption of heavy metals from water using banana and orange peels. Water Sci Technol 47:185–190

    Google Scholar 

  • Asandei D, Bulgariu L, Bobu E (2009) Lead (II) removal from aqueous solutions by adsorption onto chitosan. Cellulose Chem Technol 43:211–216

    Google Scholar 

  • Bal A, Ozkahraman B, Acar I, Ozyurek M, Guclu G (2014) Study on adsorption, regeneration, and reuse of crosslinked chitosan graft copolymers for Cu(II) ion removal from aqueous solutions. Desal Water Treat 52:3246–3255

    Article  Google Scholar 

  • Belhachemi M, Addoun F (2011) Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Appl Water Sci 1:111–117

    Article  Google Scholar 

  • Bulut Y, Aydin H (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194:259–267

    Article  Google Scholar 

  • Calero M, Hernainz F, Blazquez G, Martin-Lara MA, Tenorio G (2009) Biosorption kinetics of Cd(II), Cr(III) and Pb(II) in aqueous solution by olive stone. Braz J Chem Eng 26:265–273

    Article  Google Scholar 

  • Chieng HI, Zehra T, Lim LBL, Priyantha N, Tennakoon DTB (2014) Sorption characteristics of peat of Brunei Darussalam IV: equilibrium, thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueous solution. Environ Earth Sci. doi:10.1007/s12665-014-3135-7

    Google Scholar 

  • Dahri MK, Kooh MRR, Lim LBL (2014) Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. J Environ Chem Eng 2:1434–1444

    Article  Google Scholar 

  • Dubinin MM, Radushkevich LV (1947) The equation of characteristic curve of the activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337

    Google Scholar 

  • Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interf Sci 280:309–314

    Article  Google Scholar 

  • Foo KY, Hameed BH (2010) Insight into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in the solution. J Phys Chem 57:385–470

    Google Scholar 

  • Gil A, Assis FCC, Albeniz S, Korili SA (2011) Removal of dyes from wastewater by adsorption on pillared clays. Chem Eng J 168:1032–1040

    Article  Google Scholar 

  • Gupta BS, Curran M, Hassan S, Ghosh TK (2009) Adsorption characteristics of Cu and Ni on Irish peat moss. J Environ Manag 90:954–960

    Article  Google Scholar 

  • Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  Google Scholar 

  • Ho YS, Huang CT, Huang HW (2002) Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem 37:1421–1430

    Article  Google Scholar 

  • Kamaraj R, Ganesan P, Vasudevan S (2013) Removal of lead from aqueous solution by electrocoagulation: isotherm, kinetics and thermodynamics studies. Int J Environ Sci Technol. doi:10.1007/s13762-013-0457-z

    Google Scholar 

  • Keskinakan O, Goksu MZI, Yuceer A, Basibuyuk M, Forster CF (2003) Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum specicatum). Process Biochem 39:179–183

    Article  Google Scholar 

  • Kim TY, Park SK, Cho SY, Kim HB, Kang Y, Kim SD, Kim SJ (2005) Adsorption of heavy metals by Brewery Biomass. Korean J Chem Eng 22:91–98

    Article  Google Scholar 

  • Kim CK, Kong JY, Chun BS, Park JW (2013) Radioactive removal by adsorption on Yesan clay and zeolite. Environ Earth Sci 68:2393–2398

    Article  Google Scholar 

  • Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Hanglingar 24:1–39

    Google Scholar 

  • Langmuir I (1917) The constitutuion and fundamental properties of solids and liquids. II. Liquids. 1. J Am Chem Soc 39:1848–1906

    Article  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  Google Scholar 

  • Li J, Hu J, Sheng G, Zhao G, Huang Q (2009) Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu(I) from aqueous solution to GMZ bentonite. Colloids Surface A Physicochem Eng Aspects 349:195–201

    Article  Google Scholar 

  • Liao D, Zheng W, Li X, Yang Q, Yue X, Guo L, Zeng G (2010) Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste. J Hazard Mater 177:126–130

    Article  Google Scholar 

  • Lim LBL, Priyantha N, Chieng HI, Dahri MK, Tennakoon DTB, Zehra T, Suklueng M (2013a) Artocarpus odoratissimus skin as a potential low-cost biosorbent for the removal of methylene blue and methyl violet 2B. Desalination Water Treat. doi:10.1080/19443994.2013.852136:1-12

    Google Scholar 

  • Lim LBL, Priyantha N, Tennakoon DTB, Zehra T (2013b) Sorption characteristics of peat of Brunei Darussalam. II: Interaction of aqueous copper(II) species with raw and processed peat. J Ecotechnol Res 17:45–49

    Google Scholar 

  • Lim LBL, Priyantha N, Tennakoon DTB, Ing CH, Bandara C (2013c) Sorption characteristics of peat of Brunei Darussalam I: characterization of peat and adsorption equilibrium studies of methylene blue—peat interactions. Ceylon J Sci (Phys Sci) 17:41–51

    Google Scholar 

  • Lim LBL, Priyantha N, Mohd Mansor NH (2014) Artocarpus altilis (breadfruit) skin as a potential low-cost biosorbent for the removal of crystal violet dye: equilibrium, thermodynamics and kinetics studies. Environ Earth Sci. doi:10.1007/s12665-014-3616-8

    Google Scholar 

  • Marin J, Ayele J (2003) Removal of some heavy metal cations from aqueous solutions by spruce sawdust. II. Adsorption-desorption through column experiments. Environ Technol 24:491–502

    Article  Google Scholar 

  • Mitic-Stojanovic D-L, Zarubica A, Purenovic M, Bojic D, Andjelkovic T, Bojic AL (2011) Biosroption removal of Pb+2, Cd+2 and Zn+2 ions from water by Lagenaria vulgaris shell. Water SA 37:303–312

    Article  Google Scholar 

  • Nadeem R, Ansari TM, Khalid AM (2008) Fourier transform infrared spectroscopic characterization and optimization of Pb(II) biosorption by fish (Labeo rohita) scales. J Hazard Mater 156:64–73

    Article  Google Scholar 

  • Okoye AI, Ejikeme PM, Onukwuli OD (2010) Lead removal from wastewater using fluted pumpkin seed shell activated carbon: adsorption modeling and kinetics. Int J Environ Sci Tech 7:793–800

    Article  Google Scholar 

  • Pehlivan E, Altun T, Cetin S, Bhanger MI (2009) Lead sorption by waste biomass of hazelnut and almond shell. J Hazard Mater 167:1203–1208

    Article  Google Scholar 

  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2009) Adsorption of copper (II), Chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J Hazard Mater 170:969–977

    Article  Google Scholar 

  • Rashidi F, Sarabi RS, Ghasemi Z, Seif A (2010) Kinetic, equilibrium and thermodynamic studies for the removal of lead (II) and copper (II) ions from aqueous solution by nanocrystalline TiO2. Superlattices Microstruct 48:577–591

    Article  Google Scholar 

  • Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1029

    Article  Google Scholar 

  • Ringqvist L, Oborn I (2002) Copper and zinc adsorption onto poorly humified Sphagnum and Carex peat. Water Res 36:2233–2242

    Article  Google Scholar 

  • Salim M, Munekage Y (2009) Lead removal from aqueous solution using silica ceramic: adsorption kinetics and equilibrium studies. Int J Chem 1:23–30

    Article  Google Scholar 

  • Saroj K, Mishra AK, Upadhyay M, Sing D, Mishra M, Sujata K (2014) Kinetic, thermodynamic and equilibrium study on removal of lead(II) from aqueous solution using fly ash. Int Res J Environ Sci 3:83–92

    Google Scholar 

  • Sheng G, Wang S, Hu J, Lu Y, Li J, Dong Y, Wang X (2009) Adsorption of Pb(II) on diatomite as affected via aqueous solution chemistry and temperature. Colloids Surface A Physicochem Eng Aspects 339:159–166

    Article  Google Scholar 

  • Singh D, Rawat NS (1995) Sorption of Pb(II) by bituminous coal. Ind J Chem Technol 2:49–50

    Google Scholar 

  • Somerset VS, Petrik LF, White RA, Klink MJ, Key D, Iwuoha E (2004) The use of X-ray fluorescence (XRF) analysis in predicting the alkaline hydrothermal conversion of fly ash precipitates into zeolite. Talanta 64:109–114

    Article  Google Scholar 

  • Tiwari D, Kim HU, Lee SM (2007) Removal behavior of sericite for Cu(II) and Pb(II) from aqueous solutions: Batch and column studies. Sep Purif Technol 57:11–16

    Article  Google Scholar 

  • Wang R, Shin CH, Park S, Park JS, Kim D, Cui L, Ryu M (2014) Removal of lead(II) from aqueous stream by chemically enhanced kapok fiber adsorption. Environ Earth Sci. doi:10.1007/s12665-014-3804-6

    Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civil Eng 89:31–60

    Google Scholar 

  • Wu FC, Tseng RL, Juang RS (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J 150:366–373

    Article  Google Scholar 

  • Zehra T, Priyantha N, Lim LBL, Iqbal E (2014) Sorption characteristics of peat of Brunei Darussalam V: removal of Congo red dye from aqueous solution by peat. Desalination Water Treat 10.1080/19443994.2014.899929

  • Zhang Y, Zheng R, Zhao J, Ma F, Zhang Y, Meng Q (2014) Characterization of H3PO4-treated rice husk adsorbent and adsorption of copper(II) from aqueous solution. BioMed Res Int 10.1155/2014/496878

Download references

Acknowledgments

The authors would like to thank the Government of Brunei Darussalam and the Universiti Brunei Darussalam for their financial support. The authors are also grateful to Centre for Advanced Material and Energy Sciences (CAMES) at Universiti Brunei Darussalam for the use of XRF.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda B. L. Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehra, T., Lim, L.B.L. & Priyantha, N. Removal behavior of peat collected from Brunei Darussalam for Pb(II) ions from aqueous solution: equilibrium isotherm, thermodynamics, kinetics and regeneration studies. Environ Earth Sci 74, 2541–2551 (2015). https://doi.org/10.1007/s12665-015-4273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4273-2

Keywords

Navigation