Skip to main content

Advertisement

Log in

Investigation of groundwater chemistry at a dam site during its construction: a case study of Xiangjiaba Dam, China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Water quality can be used to reflect the hydro-geological features and seepage restrictions around grout curtains. Xiangjiaba Dam, a large hydropower station constructed in southwest of China, was investigated as a case study. Groundwater samples were collected and analysed qualitatively using hydrochemistry diagrams, after which the presence of four major water groups was determined by hierarchical cluster analysis and saturation indices of each group were calculated. Finally, inverse geochemical models of the groups were developed using PHREEQC to elucidate the dissolution/precipitation quality of different minerals and the relative contributions of different seepage sources. The hydro-geochemical methods used were found to be useful for revealing seepage behaviour within the domain during construction of a hydropower station.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater: a case study: Ain Azel plain (Algeria). Geoderma 159:390–398. doi:10.1016/j.geoderma.2010.08.016

    Article  Google Scholar 

  • Belkhiri L, Mouni L, Tiri A (2012) Water–rock interaction and geochemistry of groundwater from the Ain Azel aquifer. Algeria Environ Geochem Health 34:1–13. doi:10.1007/s10653-011-9376-4

    Article  Google Scholar 

  • Carucci V, Petitta M, Aravena R (2012) Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: a multi-isotope approach and geochemical modeling. Appl Geochem 27:266–280. doi:10.1016/j.apgeochem.2011.11.007

    Article  Google Scholar 

  • Chae G-T, Yun S-T, Kim K, Mayer B (2006) Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water–rock interaction and hydrologic mixing. J Hydrol 321:326–343. doi:10.1016/j.jhydrol.2005.08.006

    Article  Google Scholar 

  • Chae GT et al (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci Total Environ 385:272–283. doi:10.1016/j.scitotenv.2007.06.038

    Article  Google Scholar 

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313. doi:10.1016/j.jhydrol.2008.02.015

    Article  Google Scholar 

  • Craft CD, Pearson RM, Hurcomb D (2007) Mineral dissolution and dam seepage chemistry–The Bureau of reclamation experience. In: Proceedings of the 2007 national meeting, Dam Safety

  • Craig I et al (2007) Evaporation, seepage and water quality management in storage dams: a review of research methods. Environ Health 7:84–97

    Google Scholar 

  • Dassi L (2011) Investigation by multivariate analysis of groundwater composition in a multilayer aquifer system from North Africa: a multi-tracer approach. Appl Geochem 26:1386–1398. doi:10.1016/j.apgeochem.2011.05.012

    Article  Google Scholar 

  • El Naqa A, Al Kuisi M (2004) Hydrogeochemical modeling of the water seepages through Tannur Dam, southern Jordan. Environ Geol 45:1087–1100. doi:10.1007/s00254-004-0967-6

    Article  Google Scholar 

  • Gambillara R, Terrana S, Giussani B, Monticelli D, Roncoroni S, Martin S (2013) Investigation of tectonically affected groundwater systems through a multidisciplinary approach. Appl Geochem 33:13–24. doi:10.1016/j.apgeochem.2013.01.005

    Article  Google Scholar 

  • Ghobadi MH, Khanlari GR, Djalaly H (2005) Seepage problems in the right abutment of the Shahid Abbaspour dam, southern Iran. Eng Geol 82:119–126. doi:10.1016/j.enggeo.2005.09.002

    Article  Google Scholar 

  • Güler C, Thyne GD (2004) Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. J Hydrol 285:177–198. doi:10.1016/j.jhydrol.2003.08.019

    Article  Google Scholar 

  • Güler C, Thyne G, McCray J, Turner K (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474. doi:10.1007/s10040-002-0196-6

    Article  Google Scholar 

  • Hussein M (2004) Hydrochemical evaluation of groundwater in the Blue Nile Basin, eastern Sudan, using conventional and multivariate techniques. Hydrogeol J 12:144–158. doi:10.1007/s10040-003-0265-5

    Article  Google Scholar 

  • Kim J-H, Kim R-H, Lee J, Cheong T-J, Yum B-W, Chang H-W (2005) Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea. Hydrol Process 19:1261–1276. doi:10.1002/hyp.5565

    Article  Google Scholar 

  • Kumar M, Ramanathan AL, Rao MS, Kumar B (2006) Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environ Geol 50:1025–1039. doi:10.1007/s00254-006-0275-4

    Article  Google Scholar 

  • Kumar M, Kumari K, Singh U, Ramanathan AL (2009) Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: conventional graphical and multivariate statistical approach. Environ Geol 57:873–884. doi:10.1007/s00254-008-1367-0

    Article  Google Scholar 

  • Lee J-Y, Choi Y-K, Kim H-S, Yun S-T (2005) Hydrologic characteristics of a large rockfill dam: Implications for water leakage. Eng Geol 80:43–59. doi:10.1016/j.enggeo.2005.03.002

    Article  Google Scholar 

  • Lee J, Kim H, Yun S, Kwon J (2009) Factor and cluster analyses of water Chemistry in and around a large Rockfill Dam: implications for water leakage. J Geotech Geoenviron Eng 135:1254–1263. doi:10.1061/(ASCE)GT.1943-5606.0000039

    Article  Google Scholar 

  • Lin CY, Musta B, Abdullah MH (2013) Geochemical processes, evidence and thermodynamic behavior of dissolved and precipitated carbonate minerals in a modern seawater/freshwater mixing zone of a small tropical island. Appl Geochem 29:13–31. doi:10.1016/j.apgeochem.2012.10.029

    Article  Google Scholar 

  • Ma R, Wang Y, Sun Z, Zheng C, Ma T, Prommer H (2011) Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Appl Geochem 26:884–897. doi:10.1016/j.apgeochem.2011.02.008

    Article  Google Scholar 

  • Mahlknecht J, Steinich B, de León IN (2004) Groundwater chemistry and mass transfers in the Independence aquifer, central Mexico, by using multivariate statistics and mass-balance models. Environ Geol 45:781–795. doi:10.1007/s00254-003-0938-3

    Article  Google Scholar 

  • Monjerezi M, Vogt RD, Aagaard P, Saka JDK (2011) Hydro-geochemical processes in an area with saline groundwater in lower Shire River valley, Malawi: an integrated application of hierarchical cluster and principal component analyses. Appl Geochem 26:1399–1413. doi:10.1016/j.apgeochem.2011.05.013

    Article  Google Scholar 

  • Nusier O, Alawneh A, Malkawi A (2002) Remedial measures to control seepage problems in the Kafrein dam, Jordan. Bull Eng Geol Environ 61:145–152. doi:10.1007/s100640100131

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

  • Peng T-R, Wang C-H (2008) Identification of sources and causes of leakage on a zoned earth dam in northern Taiwan: hydrological and isotopic evidence. Appl Geochem 23:2438–2451. doi:10.1016/j.apgeochem.2008.05.015

    Article  Google Scholar 

  • Rosenthal E, Zilberbrand M, Livshitz Y (2007) The hydrochemical evolution of brackish groundwater in central and northern Sinai (Egypt) and in the western Negev (Israel). J Hydrol 337:294–314. doi:10.1016/j.jhydrol.2007.01.042

    Article  Google Scholar 

  • Salifu A, Petrusevski B, Ghebremichael K, Buamah R, Amy G (2012) Multivariate statistical analysis for fluoride occurrence in groundwater in the Northern region of Ghana. J Contam Hydrol 140–141:34–44. doi:10.1016/j.jconhyd.2012.08.002

    Article  Google Scholar 

  • Sharif MU, Davis RK, Steele KF, Kim B, Kresse TM, Fazio JA (2008) Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA). J Hydrol 350:41–55. doi:10.1016/j.jhydrol.2007.11.027

    Article  Google Scholar 

  • Srivastava S, Ramanathan AL (2008) Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environ Geol 53:1509–1528. doi:10.1007/s00254-007-0762-2

    Article  Google Scholar 

  • Stüben D, Berner Z, Chandrasekharam D, Karmakar J (2003) Arsenic enrichment in groundwater of West Bengal, India: geochemical evidence for mobilization of As under reducing conditions. Appl Geochem 18:1417–1434. doi:10.1016/S0883-2927(03)00060-X

    Article  Google Scholar 

  • Sung K-Y, Yun S-T, Park M-E, Koh Y-K, Choi B-Y, Hutcheon I, Kim K-H (2012) Reaction path modeling of hydrogeochemical evolution of groundwater in granitic bedrocks, South Korea. J Geochem Explor 118:90–97. doi:10.1016/j.gexplo.2012.05.004

    Article  Google Scholar 

  • Unal B, Eren M, Yalcin MG (2007) Investigation of leakage at Ataturk dam and hydroelectric power plant by means of hydrometric measurements. Eng Geol 93:45–63. doi:10.1016/j.enggeo.2007.02.006

    Article  Google Scholar 

  • Uromeihy A, Farrokhi R (2012) Evaluating groutability at the Kamal-Saleh Dam based on Lugeon tests. Bull Eng Geol Environ 71:215–219. doi:10.1007/s10064-011-0382-7

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by The National Natural Science Foundation of China under Grant No. 41272265 and the Scientific Research and Innovation Foundation to support college graduates of Jiangsu Province, China under Grant No. CX10B_218Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Xiang Huo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, JX., Song, HZ. & Luo, L. Investigation of groundwater chemistry at a dam site during its construction: a case study of Xiangjiaba Dam, China. Environ Earth Sci 74, 2451–2461 (2015). https://doi.org/10.1007/s12665-015-4261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4261-6

Keywords

Navigation