Skip to main content
Log in

A bibliometric analysis of global research progress on pharmaceutical wastewater treatment during 1994–2013

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Pharmaceutical wastewater contains large amounts of high concentration refractory organic intermediates, which have got potential hazards to human health and the environment. It has attracted great attention from the governments, the public and the researchers. In this context, understanding current state of pharmaceutical wastewater treatment research can help guide future research. A bibliometric analysis based on the science citation index expanded from web of science (WoS) was carried out to assess the research pattern and tendencies of pharmaceutical wastewater treatment from 1994 to 2013. Study emphases herein included performance of publication covering annual outputs, mainstream journals, WoS categories, leading countries, institutions, research tendencies and hotspots. The results showed that the annual output of related scientific articles had increased steadily, with approximately 88 % of all articles on pharmaceutical wastewater treatment during 1994–2013 published since 2003. Water research, chemosphere and environmental science and technology were the three most common journals in pharmaceutical wastewater treatment research. The United States takes the dominant position in this field, followed by Spain and Germany. A summary of the most frequently used keywords obtained from words in paper title analysis, author keyword analysis and keywords plus analysis provided the clues to discover current research emphases. The mainstream research related to pharmaceutical wastewater was on wastewater treatment methods and the related contaminants. Adsorption, ozonation and photocatalysis were common treatment techniques and are getting popular. The commonly researched pharmaceutical wastewater contaminants were carbamazepine, diclofenac, ibuprofen, clofibric acid, and triclosan, which have emerged as the frequently studied contaminants in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar JAP, Andreu V, Vazquez P, Pico Y (2014) Presence and spatial distribution of emerging contaminants (drugs of abuse) in protected agroecological systems (L’Albufera de Valencia Coastal Wetland, Spain). Environ Earth Sci 71:31–37

    Article  Google Scholar 

  • Andreozzi R, Caprio V, Marotta R, Radovnikovic A (2003a) Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation. J Hazard Mater 103:233–246

    Article  Google Scholar 

  • Andreozzi R, Raffaele M, Nicklas P (2003b) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50:1319–1330

    Article  Google Scholar 

  • Awad YM, Kim SC, Abd El-Azeem SAM, Kim KH, Kim KR, KimK JeonC, Lee SS, Ok YS (2014) Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environ Earth Sci 71:1433–1440

    Article  Google Scholar 

  • Belter CW, Seidel DJ (2013) A bibliometric analysis of climate engineering research. Wiley Interdisciplinary Reviews. Climate Change 4:417–427

    Google Scholar 

  • Beltrán FJ, Pocostales P, Alvarez P, Oropesa A (2009) Diclofenac removal from water with ozone and activated carbon. J Hazard Mater 163:768–776

    Article  Google Scholar 

  • Burke V, Richter D, Hass U, Duennbier U, Greskowiak J, Massmann G (2014) Redox-dependent removal of 27 organic trace pollutants: compilation of results from tank aeration experiments. Environ Earth Sci 71:3685–3695

    Article  Google Scholar 

  • Cabrita I, Ruiz B, Mestre AS, Fonseca IM, Carvalho AP, Ania CO (2010) Removal of an analgesic using activated carbons prepared from urban and industrial residues. Chem Eng J 163:249–255

    Article  Google Scholar 

  • Carballa M, Omil F, Lema JM (2005) Removal of cosmetic ingredients and pharmaceuticals in sewage primary treatment. Water Res 39:4790–4796

    Article  Google Scholar 

  • Chatzitakis A, Berberidou C, Paspaltsis I, Kyriakou G, Sklaviadis T, Poulios I (2008) Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Res 42:386–394

    Article  Google Scholar 

  • Chelliapan S, Wilby T, Sallis PJ (2006) Performance of an up-flow anaerobic stagereactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics. Water Res 40:507–516

    Article  Google Scholar 

  • Chen X, Richard J, Liu Y, Dopp E, Tuerk J, Bester K (2012) Ozonation products of triclosan in advanced wastewater treatment. Water Res 46:2247–2256

    Article  Google Scholar 

  • Cho HH, Huang H, Schwab K (2011) Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir 27:12960–12967

    Article  Google Scholar 

  • Choi KJ, Kim SG, Kim SH (2008) Removal of antibiotics by coagulation and granular activated carbon filtration. J Hazard Mater 151:38–43

    Article  Google Scholar 

  • Clara M, Strenn B, Gans O, Martinez E, Kreuzinger E, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39:4797–4807

    Article  Google Scholar 

  • Coleman HM, Eggins BR, Byrne JA, Palmer FL, King E (2000) Photocatalytic degradation of 17β-oestradiol on immobilized TiO2. Appl Catal B Environ 24:1–5

    Article  Google Scholar 

  • Collado S, Laca A, Diaz M (2013) Effect of intermediate compounds and products on wet oxidation and biodegradation rates ofpharmaceutical compounds. Chemosphere 92:207–212

    Article  Google Scholar 

  • Daghri R, Drogui P, Dimboukou-Mpira A, EI Khakani MA (2013) Photoelectrocatalytic degradation of carbamazepine using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process. Chemosphere 93:2756–2766

    Article  Google Scholar 

  • De Witte B, Dewulf J, Demeestere K, Langenhove HV (2009) Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water. J Hazard Mater 161:701–708

    Article  Google Scholar 

  • Doll TE, Frimmel FH (2004) Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials-determination of intermediates and reaction pathways. Water Res 38:955–964

    Article  Google Scholar 

  • Doll TE, Frimmel FH (2005a) Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues-evaluation of the long-termstability of the photocatalytic activity of TiO2. Water Res 39:847–854

    Article  Google Scholar 

  • Doll TE, Frimmel FH (2005b) Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents. Water Res 39:403–411

    Article  Google Scholar 

  • Dutta M, Dutta NN, Bhattacharya KG (1999) Aqueous phase adsorption of certain beta-lactam antibiotics onto polymeric resins and activated carbon. Sep Purif Technol 16:213–224

    Article  Google Scholar 

  • Fu HZ, Wang MH, Ho YS (2013) Mapping of drinking water research: a bibliometric analysis of research output during 1992–2011[J]. Sci Total Environ 443:757–765

    Article  Google Scholar 

  • Fuerhacker M, Dürauer A, Jungbauer A (2001) Adsorption isotherms of 17β-estradiol on granular activated carbon (GAC). Chemosphere 44:1573–1579

    Article  Google Scholar 

  • Garfield E (1970) Citation indexing for studying science. Nature 227:669

    Article  Google Scholar 

  • Gobel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Fate of sulfonamides, macrolides and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372:361–371

    Article  Google Scholar 

  • Gómez-Pacheco CV, Sánchez-Polo M, Rivera-Utrilla J, López-Peñalver J (2011) Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation. Chem Eng J 178:115–121

    Article  Google Scholar 

  • Gros M, Petrović M, Barcelo D (2007) Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the Ebro river basin (northeast Spain). Environ Toxicol Chem 26:1553–1562

    Article  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17

    Article  Google Scholar 

  • Ho YS (2007) Bibliometric analysis of adsorption technology in environmental science. J Environ Prot Sci 1:1–11

    Google Scholar 

  • Ho YS, Satoh H, Lin SY (2010) Japanese lung cancer research trends and performance in science citation index. Intern Med 49:2219–2228

    Article  Google Scholar 

  • Hua W, Bennett ER, Letcher RJ (2006) Ozone treatment and the depletion of detectable pharmaceuticals and atrazine herbicide in drinking water sourced from the upper Detroit River, Ontario, Canada. Water Res 40:2259–2266

    Article  Google Scholar 

  • Huber MM, Canonica S, Park GY, von Gunten U (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37:1016–1024

    Article  Google Scholar 

  • Huber MM, Göbel A, Joss A, Hermann N, Löffler D, McArdell CS, Ried A, Siegrist H, Ternes TA, von Gunten U (2005) Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ Sci Technol 39:4290–4299

    Article  Google Scholar 

  • Irmak S, Erbatur O, Akgerman A (2005) Degradation of 17β-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques. J Hazard Mater 126:54–62

    Article  Google Scholar 

  • Jelic A, Michael I, Achilleos A, Hapeshi E, Lambropoulou D, Perez S, Petrovic M, Fatta-Kassinos D, Barcelo D (2013) Transformation products and reaction pathways of carbamazepine during photocatalytic and sonophotocatalytic treatment. J Hazard Mater 263:177–186

    Article  Google Scholar 

  • Joss A, Ternes TA, Alder A, Gobel A, McArdell CS, Elvira K, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39(14):3139–3152

    Article  Google Scholar 

  • Joss A, Zabczynski S, Gobel A, Hoffmann B, Löfflerc D, McArdella, CS Ternesc TA, Thomsena A, Siegrista H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–1696

    Article  Google Scholar 

  • Kanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12:27–47

    Article  Google Scholar 

  • Kim IH, Tanaka H, Iwasaki T, Takubo T, Kato Y (2008) Classification of the degradability of 30 pharmaceuticals in water with ozone, UV and H2O2. Water Sci Technol 57:195–200

    Article  Google Scholar 

  • Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417

    Article  Google Scholar 

  • Koenig MED (1983) A bibliometric analysis of pharmaceutical research. Res Policy 12:15–36

    Article  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  Google Scholar 

  • Kraigher B, Kosjek T, Heath E, Kompare B, Mandic-Mulec I (2008) Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res 42:4578–4588

    Article  Google Scholar 

  • Kunkel U, Radke M (2012) Fate of pharmaceuticals in rivers: deriving a benchmark dataset at favorable attenuation conditions. Water Res 46:5551–5565

    Article  Google Scholar 

  • Lajeunesse A, Smyth SA, Barclay K, Sauve S, Gagnon C (2012) Distribution of antidepressant residues in wastewater and biosolids following different treatment processes by municipal wastewater treatment plants in Canada. Water Res 46:5600–5612

    Article  Google Scholar 

  • Lam MW, Mabury SA (2005) Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquat Sci 67:177–188

    Article  Google Scholar 

  • LaPara TM, Nakatsu CH, Pantea LM, Alleman JE (2001) Aerobic biological treatment of a pharmaceutical wastewater: effect of temperature on COD removal and bacterial community development. Water Res 35:4417–4425

    Article  Google Scholar 

  • Lester Y, Mamane H, Zucker I, Avisar D (2013) Treating wastewater from a pharmaceutical formulation facility by biological process and ozone. Water Res 47:4349–4356

    Article  Google Scholar 

  • Li JF, Zhang YH, Wang XS, Ho YS (2009) Bibliometric analysis of atmospheric simulation trends in meteorology and atmospheric science journals. Croat Chem Acta 82:695–705

    Google Scholar 

  • Li JF, Wang MH, Ho YS (2011) Trends in research on global climate change: a science citation index expanded-based analysis. Glob Plane Change 77:13–20

    Article  Google Scholar 

  • Lindström A, Buerge IJ, Poiger T, Bergqvist PA, Müller MD, Buser HR (2002) Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol 36:2322–2329

    Article  Google Scholar 

  • Long ER, Dutch M, Weakland S, Chandramouli B, Benskin JP (2013) Quantification of pharmaceuticals, personal care products, and perfluoroalkyl substances in the marine sediments of Puget Sound, Washington, USA. Environ Toxicol Chem 32:1701–1710

    Article  Google Scholar 

  • Malarvizhi R, Wang MH, Ho YS (2010) Research trends in adsorption technologies for dye containing wastewaters. World Appl Sci J 8:930–942

    Google Scholar 

  • Mao N, Wang MH, Ho YS (2010) A bibliometric study of the trend in articles related to risk assessment published in science citation index. Hum Ecol Risk Assess 16:801–824

    Article  Google Scholar 

  • McArdell CS, Molnar E, Suter MJF, Giger W (2003) Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland. Environ Sci Technol 37:5479–5486

    Article  Google Scholar 

  • McMillan GS, Hamilton RD (2000) Using bibliometrics to measure firm knowledge: an analysis of the US pharmaceutical industry. Technol Anal Strateg 12:465–475

    Article  Google Scholar 

  • Mela GS, Cimmino MA, Ugolini D (1999) Impact assessment of oncology research in the European Union. Eur J Cancer 35:1182–1186

    Article  Google Scholar 

  • Mendez-Arriaga F, Esplugas S, Gimenez J (2008) Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res 42:585–594

    Article  Google Scholar 

  • Mestre AS, Bexiga AS, Proença M, Andradea M, Pintoa ML, Matosb I, Fonsecab IM, Carvalhoa AP (2011) Activated carbons from sisal waste by chemical activation with K2CO3: kinetics of paracetamol and ibuprofen removal from aqueous solution. Bioresour Technol 102:8253–8260

    Article  Google Scholar 

  • Miao XS, Bishay F, Chen M, Metcalfe CD (2004) Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ Sci Technol 38:3533–3541

    Article  Google Scholar 

  • Monteagudo JM, Duran A, Culebradas R, San Martin I, Carnicer A (2013) Optimization of pharmaceutical wastewater treatment by solar/ferrioxalate photo-catalysis. J Environ Manage 128:210–219

    Article  Google Scholar 

  • Naddeo V, Ricco D, Scannapieco D, Belgiorno V (2012) Degradation of antibiotics in wastewater during sonolysis, ozonation, and their simultaneous application: operating conditions effects and processes evaluation. Int J Photoenergy 2012:1–7

    Article  Google Scholar 

  • Narin F, Rozek RP (1988) Bibliometric analysis of US pharmaceutical industry research performance. Res Policy 17:139–154

    Article  Google Scholar 

  • Ng KK, Shi XQ, Yao YN, Ng HY (2014) Bio-entrapped membrane reactor and salt marsh sediment membrane bioreactor for the treatment of pharmaceutical wastewater: treatment performance and microbial communities. Bioresour Technol 171:265–273

    Article  Google Scholar 

  • Peng X, Wang Z, Kuang W, Tan JH, Li K (2006) A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Sci Total Environ 371:314–322

    Article  Google Scholar 

  • Ravina M, Campanella L, Kiwi J (2002) Accelerated mineralization of the drug diclofenac via Fenton reactions in a concentric photo-reactor. Water Res 36:3553–3560

    Article  Google Scholar 

  • Riedl J, Rotter S, Faetsch S, Schmitt-Jansen M, Altenburger R (2013) Proposal for applying a component-based mixture approach for ecotoxicological assessment of fracturing fluids. Environ Earth Sci 71:1433–1440

    Google Scholar 

  • Ritz LS, Adam T, Laing R (2010) A bibliometric study of publication patterns in access to medicines research in developing countries. South Med Rev 3:2–6

    Google Scholar 

  • Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joyaa G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93:1268–1287

    Article  Google Scholar 

  • Rodríguez I, Quintana JB, Carpinteiro J, Carro AM, Lorenzo RA, Cela R (2003) Determination of acidic drugs in sewage water by gas chromatography-mass spectrometry as tert-butyldimethylsilyl derivatives. J Chromatogr A 985:265–274

    Article  Google Scholar 

  • Rojas-Sola JI, de San-Antonio-Gomez C (2010) Bibliometric analysis of Spanish scientific publications in the subject construction and building technology in web of science database (1997–2008). Mater De Constr 60:143–149

    Article  Google Scholar 

  • Rosenfeld EJ, Linden KG (2004) Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ Sci Technol 38:5476–5483

    Article  Google Scholar 

  • Segura Y, Martinez F, Melero JA (2013) Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron. Appl Catal B Environ 136:64–69

    Article  Google Scholar 

  • Sein MM, Zedda M, Tuerk J, Schmidt TC, Golloch A, Von Sonntag C (2008) Oxidation of diclofenac with ozone in aqueous solution. Environ Sci Technol 42:6656–6662

    Article  Google Scholar 

  • Sirtori C, Zapata A, Oller I, Gernjak W, Aguera A, Malato S (2009a) Solar photo-Fenton as finishing step for biological treatment of a pharmaceutical wastewater. Environ Sci Technol 43:1185–1191

    Article  Google Scholar 

  • Sirtori C, Zapata A, Oller I, Gernjak W, Aguera A, Malato S (2009b) Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Res 43:661–668

    Article  Google Scholar 

  • Skoumal M, Cabot PL, Centellas F, Arias C, Rodríguez RM, Garrido JA, Brillas E (2006) Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+and UVA light. Appl Catal B Environ 66(3):228–240

    Article  Google Scholar 

  • Snyder SA, Adham S, Redding AM, Cannon FS, DeCarolis J, Oppenheimer J, Wert EC, Yoon Y (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202:156–181

    Article  Google Scholar 

  • Sui Q, Huang J, Deng S, Yu G, Fan Q (2010) Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res 44:417–426

    Article  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in german sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  Google Scholar 

  • Ternes TA, Hirsch R (2000) Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment. Environ Sci Technol 34:2741–2748

    Article  Google Scholar 

  • Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert U (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36:3855–3863

    Article  Google Scholar 

  • Ternes TA, Stuber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37:1976–1982

    Article  Google Scholar 

  • Tijssen RJW (2009) Internationalisation of pharmaceutical R&D: how globalised are Europe’s largest multinational companies? Technol Anal Strateg 21:859–879

    Article  Google Scholar 

  • Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37:1061–1068

    Article  Google Scholar 

  • Urtiaga AM, Perez G, Ibanez R, Ortiz I (2013) Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate. Desalination 331:26–34

    Article  Google Scholar 

  • Xie SD, Zhang J, Ho YS (2008) Assessment of world aerosol research trends by bibliometric analysis. Scientometrics 77:113–130

    Article  Google Scholar 

  • Yang L, Yu LE, Ray MB (2008) Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res 42:3480–3488

    Article  Google Scholar 

  • Yuan S, Jiang X, Xia X, Zhang H, Zheng S (2013) Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China. Chemosphere 90:2520–2525

    Article  Google Scholar 

  • Zheng BG, Zheng Z, Zhang JB, Luo XZ, Wang JQ, Liu Q, Wang LH (2011) Degradation of the emerging contaminant ibuprofen in aqueous solution by gamma irradiation. Desalination 276:379–385

    Article  Google Scholar 

  • Zwiener C, Frimmel FH (2000) Oxidative treatment of pharmaceuticals in water. Water Res 34:1881–1885

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Key Scientific and Technological Project for Water Pollution Control and Management (No. 2012ZX07202-005, No. 2012ZX07202-002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengchang He or Yonghui Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, F., He, M., Song, Y. et al. A bibliometric analysis of global research progress on pharmaceutical wastewater treatment during 1994–2013. Environ Earth Sci 73, 4995–5005 (2015). https://doi.org/10.1007/s12665-015-4183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4183-3

Keywords

Navigation