Skip to main content

Advertisement

Log in

A regional rockfall database: the Eastern Alps test site

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Landslide databases are essential tools for risk assessment. In the Italian portion of the South-Eastern Alps these archives are managed by the Veneto Region and by the provinces of Bolzano and Trento, as part of the Italian Inventory of Landslides. About 750 rockfall events recorded in these archives were checked, put together and completed to create a new integrated database. Information on 24 new rockfalls were added from different research sources. Descriptive statistic shows that the most affected slopes with the highest frequency of rockfall are the southern ones. The distribution of rockfalls during the year presents three peaks in March, June and November. The most commonly affected lithologies are massive dolomites, effusive rocks and mica schists. Roads proved to be the most commonly involved feature. The hypsographic curves obtained from the DEMs of the provinces of Belluno, Bolzano and Trento have shown that the different areas potentially affected by periglacial processes experience rockfalls during summer and autumn, thus representing a risk to tourists and hikers. This study is the first attempt to collate and extend the available information in the various rockfall databases in the Eastern Italian Alps, with the aim at creating uniform data collection for the whole Alpine range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • APAT (2007) Rapporto sulle frane in Italia: il Progetto IFFI: metodologia, risultati e rapporti regionali. APAT

  • Baroni C, Carton A, Seppi R (2004) Distribution and behaviour of rock glaciers in the Adamello-Presanella Massif (Italian Alps). Permaf and Periglac Processes 15:243–259. doi:10.1002/ppp.497

    Article  Google Scholar 

  • Bassetti M, Borsato A (2005) Evoluzione geomorfologica della Bassa Valle dell’Adige dall’Ultimo Massimo Glaciale: sintesi delle conoscenze e riferimenti ad aree limitrofe. Stud Trent Sci Nat Acta Geol 82:31–42

    Google Scholar 

  • Bateman V (2003) Development of a database to manage rockfall hazard: the Tennessee rockfall hazard database. In: Proceeding of 82nd Annual Meeting of the Transportation Research Board, Washington, DC http://www.ltrc.lsu.edu/TRB_82/TRB2003-001624.pdf. Accessed 17th Jan 2015

  • Bathrellos GD, Gaki-Papanastassiou K, Skilodimou HD, Papanastassiou D, Chousianitis KG (2012) Potential suitability for urban planning and industry development using natural hazard maps and geological–geomorphological parameters. Environ Earth Sci 66(2):537–548. doi:10.1007/s12665-013-2390-3

    Article  Google Scholar 

  • Bathrellos GD, Skilodimou HD, Maraoukian H (2014) The spatial distribution of middle and late Pleistocene cirques in Greece. Environ Earth Sci 96:323–338. doi:10.1111/geoa.12044

    Google Scholar 

  • Boeckli L, Brenning A, Gruber S, Noetzli J (2011) A statistical permafrost distribution model for the European Alps. Cryosphere Discuss 5(3):1419–1459. doi:10.5194/tcd-5-1419-2011

    Article  Google Scholar 

  • Boeckli L, Brenning A, Gruber S, Noetzli J (2012) Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. Cryosphere 6:807–820. doi:10.5194/tc-6-807-2012

    Article  Google Scholar 

  • Bosellini A, Gianolla P, Stefani M (2003) Geology of the dolomites. Episodes 26(3):181–185

    Google Scholar 

  • Carton A, Bondesan A, Fontana A, Meneghel M, Miola A, Mozzi P, Primon S, Surian N (2009) Geomorphological evolution and sediment transfer in the Piave River system (northeastern Italy) since the Last Glacial Maximum. Géomorphologie Relief Processus Environ 3(2009):155–174

  • Compagnoni B, Galluzzo F (2005) Carta Geologica d’Italia, scala 1:1,250,000. APAT, Firenze

    Google Scholar 

  • Dal Piaz GV, Bistacchi A, Massironi M (2003) Geological outline of the Alps. Episodes 26(3):175–180

    Google Scholar 

  • Davies MC, Hamza O, Harris C (2001) The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuity. Permaf Periglac Process 12(1):137–144. doi:10.1002/ppp.378

    Article  Google Scholar 

  • Desiato F, Lena F, Baffo F, Suatoni B, Toreti A (2005) Indicatori del clima in Italia elaborati attraverso il sistema SCIA. APAT http://88.45.133.130/meteoambientecampania/documentazione/APAT/Indicatori_Del_Clima_In_Italia.pdf. Accessed 17th Jan 2015

  • Doglioni C (1987) Tectonics of the dolomites (Southern Alps, northern Italy). J Struct Geol 9:181–193

    Article  Google Scholar 

  • Dussauge-Peisser C, Helmstetter A, Grasso JR, Hantz D, Desvarreux P, Jeannin M, Giraud A (2002) Probabilistic approach to rock fall hazard assessment: potential of historical data analysis. Nat Hazards Earth Syst Sci 2:15–26

    Article  Google Scholar 

  • Ferlisi S, Cascini L, Corominas J, Matano F (2012) Rockfall risk assessment to person travelling in vehicles along a road: the case study of the Amalfi coastal road (southern Italy). Nat Hazards 62:691–721

    Article  Google Scholar 

  • Fischer L, Kaab A, Huggel C, Noetzli J (2006) Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face. Nat Hazards Earth Syst Sci 6(5):761–772. doi:10.5194/nhess-6-761-2006

    Article  Google Scholar 

  • Fischer L, Purves RS, Huggel C, Noetzly J, Haeberli W (2012) On the influence of topographic, geological and cryospheric factors on the rock avalanches and rockfalls in high-mountain areas. Nat Hazards Earth Syst Sci 12(1):241–254

    Article  Google Scholar 

  • Frattini P, Crosta G, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94(3):419–437. doi:10.1016/j.geomorph.2006.10.037

    Article  Google Scholar 

  • Galadini F, Poli ME, Zanferrari A (2005) Seismogenic sources potentially responsible for earthquakes with M ≥ 6 in the eastern Southern Alps (Thiene-Udine sector, NE Italy). Geophys J Int 161(3):739–762

    Article  Google Scholar 

  • Gianolla P (2007) Geology of the Dolomites. In: Nomination of the Dolomites for inscription on the World Natural Heritage list UNESCO, nomination document. Annex 2.1. Dolomites Nomination Commitee, Online Book. http://www.dolomiti-unesco.org/de/node/6. Accessed 17 Jan 2015

  • Gunzburger Y, Merrien-Soukatchoff V, Guglielmi Y (2005) Influence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France). Int J Rock Mech Min Sci 42(3):331–349. doi:10.1016/j.ijrmms.2004.11.003

    Article  Google Scholar 

  • Hales TC, Roering JJ (2005) Climate-controlled variations in scree production, Southern Alps, New Zeland. Geology 33(9):701–704. doi:10.1130/G21528.1

    Article  Google Scholar 

  • Hilker N, Badoux A, Hegg C (2009) The Swiss flood and landslide damage database 1972–2007. Nat Hazards Earth Syst Sci 9(3):913–925. doi:10.5194/nhess-9-913-2009

    Article  Google Scholar 

  • Hungr O, Evans SG, Hazzard J (1999) Magnitude and frequency of rockfalls and rock slides along the main transportation corridors of south-western British Columbia. Can Geotech J 36(2):224–238. doi:10.1139/t98-106

    Article  Google Scholar 

  • Marazzi S (2005) Atlante orografico delle Alpi. SOIUSA. Suddivisione orografica internazionale unificata del Sistema Alpino. Priuli & Verlucca editors

  • Matsuoka N, Sakai H (1999) Rockfall activity from an alpine cliff during thawing periods. Geomorphology 28(3):309–328. doi:10.1016/S0169-555X(98)00116-0

    Article  Google Scholar 

  • Menéndez Duarte R, Marquinez J (2002) The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS. Geomorphology 43(1):117–136. doi:10.1016/S0169-555X(01)00126-X

    Article  Google Scholar 

  • Papadopoulou-Vrynioti K, Bathrellos GD, Skilodimou HD, Kaviris G, Makropoulos K (2013) Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area. Eng Geol 158:77–88. doi:10.1016/j.enggeo.2013.02.009

    Article  Google Scholar 

  • Pirulli M (2009) The Thurwieser rock avalanche (Italian Alps): description and dynamic analysis. Eng Geol 109(1):80–92. doi:10.1016/j.enggeo.2008.10.007

    Article  Google Scholar 

  • Rozos D, Bathrellos GD, Skilodimou HD (2011) Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County of Peloponnesus, Greece. Environ Earth Sci 63(1):49–63. doi:10.1007/s12665-010-0687-z

    Article  Google Scholar 

  • Rozos D, Skilodimou HD, Loupasakis C, Bathrellos G (2013) Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environ Earth Sci 70:3255–3266. doi:10.1007/s12665-013-2390-3

    Article  Google Scholar 

  • Schoeneich P, Dall’Amico M, Deline P, Zischg A (2011) Hazard related to permafrost and to permafrost degradation. PermaNET project, state-of-the-art report 6.2. On-line publication ISBN 978-2-903095-59-8. http://www.permanet-alpinespace.eu/archive/pdf/WP6_2_local_ground_movements.pdf. Accessed 17th Jan 2015

  • Silhan K, Brazdil R, Panek T, Dobrovolny P, Kasickova L, Tolasz R, Tursky O, Vaclavek M (2011) Evaluation of meteorological controls of reconstructed rockfall activity in the Czech Flysch Carpathians. Earth Surf Process Landforms 36(14):1898–1909. doi:10.1002/esp.2211

    Article  Google Scholar 

  • Stoffel M, Huggel C (2012) Effects of climate change on mass movements in mountain environments. Prog Physical Geogr 36(3):421–439

    Article  Google Scholar 

Download references

Acknowledgments

The research was funded by the University of Padova in the framework of the Strategic projet “GHP-MMI”—geological and hydrological processes: monitoring, modelling and impact in the North-Eastern Italy (GEO RISCS) (coordinator of Research Unit: A. Carton; code STPD08RWBY-2008). Davide Corò was supported with a research contract to build the database and to carry out data analyses. The authors want to thank Luciano Arziliero (Veneto Region), Silvia Tagnin (Bolzano Province) and Riccardo Campana (Trento Province) for supplying the rockfall data. The authors are in debt to Elisa Destro for GIS support and with Alberto De Luca and Roberto Seppi for their help in managing and processing geological and topographical information. The notes and comments of the anonymous reviewers contributed to increase the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Corò.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corò, D., Galgaro, A., Fontana, A. et al. A regional rockfall database: the Eastern Alps test site. Environ Earth Sci 74, 1731–1742 (2015). https://doi.org/10.1007/s12665-015-4181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4181-5

Keywords

Navigation