Skip to main content
Log in

Characterization and evaluation of hydrothermally influenced clayey sediments from Caldeiras da Ribeira Grande fumarolic field (Azores Archipelago, Portugal) used for aesthetic and pelotherapy purposes

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Caldeiras da Ribeira Grande fumarolic field is located in the Fogo Volcano complex, São Miguel Island (Azores Archipelago, Portugal). These are associated with a geothermal system of high enthalpy that allows the existence of singular thermal muds or peloids that are continuously mixed with water inside a manmade pool. The peloids produced by the maturation (mixture) in situ are extracted from this boiling-mud pool and used directly in a local thermal centre (the “Banhos da Coroa” centre), which exists since 1811, for the relief of pain associated with rheumatic diseases and skin disorders treatment. Until this investigation, the application of sediments from Ribeira Grande for pelotherapy ends was only evaluated by human perception. Thus, this work aims the physical, mineralogical and geochemical characterization of the peloids collected inside the boiling-mud pool and the evaluation of their potential to be used for aesthetic and therapeutic purposes. The assessment of the volume of clays available for exploitation is also estimated. Sediments from Caldeiras da Ribeira Grande are naturally heated (above 36 °C in most of the cases) and present pH up to 5. The X-ray fluorescence analyses revealed a high content on Si and S, which are useful for therapeutic purposes and the risk inherent to potential toxic elements’ concentrations was evaluated. The X-ray diffraction data showed the presence of clay minerals, sulphates (alunite) and feldspars. Additionally to these features, silty-clay fraction also exhibits interesting features, such as suitable abrasivity and high plasticity. A detailed field survey was carried out at the Caldeiras da Ribeira Grande boiling-mud pool, including the measurement of the sediments thickness at 45 points and the determination of the ratio wet to dry sediments weight. This allowed to estimate a volume of sediments available for exploitation of 84 m3, or about 36 ton of dry sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baschini M, Pettinari G, Vallés J, Aguzzi C, Cerezo P, López-Galindo A, Setti M, Viseras C (2010) Suitability of natural sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Appl Clay Sci 49(3):205–212. doi:10.1016/j.clay.2010.05.008

    Article  Google Scholar 

  • Bender T, Karagülle Z, Bálint G, Gutenbrunner C, Bálint P, Sukenik S (2005) Hydrotherapy, balneotherapy, and spa treatment in pain management. Rheumatol Int 25:220–224

    Article  Google Scholar 

  • Bowe W, Shalita A (2008) Effective over-the-counter acne treatments. Semin Cutan Med Surg 27(3):170–176

    Article  Google Scholar 

  • Brindley G, Brown G (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, Monograph no.5, London

  • Britschka Z, Teodoro W, Velosa A, Mello S (2007) The efficacy of Brazilian black mud treatment in chronic experimental arthritis. Rheumatol Int 28:39–45

    Article  Google Scholar 

  • Carretero M, Pozo M (2009) Clay and non-clay minerals in the pharmaceutical industry: part I. Excipients and medical applications. Appl Clay Sci 46(1):73–80. doi:10.1016/j.clay.2009.07.017

    Article  Google Scholar 

  • Carretero M, Pozo M (2010) Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Appl Clay Sci 47(3–4):171–181. doi:10.1016/j.clay.2009.10.016

    Article  Google Scholar 

  • Carvalho M (1999) Hidrogeologia do Maciço Vulcânico de Água de Pau/Fogo (São Miguel Açores). Dissertação Doutoramento, Universidade de Lisboa

  • Carvalho M, Forjaz VH, Almeida C (2006) Chemical composition of deep hydrothermal fluids in the Ribeira Grande geothermal field (São Miguel, Azores). J Volcanol Geotherm Res 156(1–2):116–134. doi:10.1016/j.jvolgeores.2006.03.015

    Article  Google Scholar 

  • Carvalho M, Mateus A, Nunes J, Carvalho J, Capaso G, Grassa F, Sá H (2013) Influência do grau de ebulição do fluido na formação de peloides nos polos fumarólicos do Vulcão do Fogo (S. Miguel, Açores). In: Nunes JC, Silva JB, Gomes CF, INOVA (eds) Proceedings “3rd Iberoamerican Congress of Peloids”, INOVA, Azores, pp 247–253

  • Chilvers D, Peterson P (1987) Global cycling of arsenic. In: Hutchinson TC, Meema KM (eds) Lead, mercury, cadmium and arsenic in the environment SCOPE, vol 31. Wiley, New York, pp 279–301

    Google Scholar 

  • Cruz J (2003) Groundwater and volcanoes: examples from the Azores Archipelago. Environ Geol 44:343–355

    Article  Google Scholar 

  • Cruz J, Freire P, Costa A (2010) Mineral waters characterization in the Azores archipelago (Portugal). J Volcanol Geotherm Res 190(3–4):353–364. doi:10.1016/j.jvolgeores.2009.12.001

    Article  Google Scholar 

  • European Medicines Agency (2008) Guideline on the specification limits for residual metal catalysts for metal reagents. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003586.pdf. Accessed July 2014

  • Evcik D, Kavuncu V, Yeter A, Yigit I (2007) The efficacy of balneotherapy and mud pack therapy in patients with knee osteoarthritis. Joint Bone Spine 74:60–65

    Article  Google Scholar 

  • Ferrand T, Yvon J (1991) Thermal properties of clay pastes for pelotherapy. Appl Clay Sci 16:21–38

    Article  Google Scholar 

  • Fioravanti A, Cantarini L, Guidelli GM, Galeazzi M (2011) Mechanisms of action of spa therapies in rheumatic diseases: what scientific evidence is there? Rheumatol Int 31:1–8

    Article  Google Scholar 

  • Galhano C, Rocha F, Gomes C (1999) Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the “Argilas de Aveiro” formation (Portugal). Clay Min 34:109–116

    Article  Google Scholar 

  • Galzigna L, Ceschi-Berrini C, Moschin E, Tolomeo C (1998) Thermal mud-pack as anti-inflammatory treatment. Biomed Pharmacother 52:408–409

    Article  Google Scholar 

  • Health Canada (2012) Guidance on heavy metal impurities in cosmetics. http://www.hc-sc.gc.ca/cps-spc/pubs/indust/heavy_metals-metaux_lourds/index-eng.php. Accessed July 2014

  • Holtz RD, Kovacs WD (1981) An introduction to geotechnical engineering. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Kazandjieva J, Grozdev I, Darlenski R, Tsankov N (2008) Climatotherapy of psoriasis. Clin Dermatol 26:477–485

    Article  Google Scholar 

  • Khlaifat A, Al-Khashman O, Qutob H (2010) Physical and chemical characterization of Dead Sea mud. Mater Charact 61(5):564–568

    Article  Google Scholar 

  • Klee S, Farwick M, Lersch P (2009) Triggered release of sensitive active ingredients upon response to the skin’s natural pH. Colloids Surf A Physicochem Eng Asp 338:162–166

    Article  Google Scholar 

  • Klinkenberg M, Rickertsen N, Kaufhold S, Dohrmann R, Siegesmund S (2009) Abrasivity by bentonite dispersions. Appl Clay Sci 46:37–42

    Article  Google Scholar 

  • Lange U, Müller-Ladner U, Schmidt K (2006) Balneotherapy in rheumatic diseases-an overview of novel and known aspects. Rheumatol Int 26:497–499

    Article  Google Scholar 

  • Mellinger RM (1979) Quantitative X-ray diffraction analysis of clay minerals. An evaluation. Saskatchenwan Res. Council, Canada, SRC Report G-79:1–46

  • Momani K, El-Hasan T, Auaydeh S, Al-Nawayseh K (2009) Heavy metals distribution in the Dead Sea black mud, Jordan. Jordan J Earth Environ Sci 2(2):81–88

    Google Scholar 

  • Nasermoaddeli A, Kagamimori S (2005) Balneotherapy in medicine: a review. Environ Health Prev Med 10:171–179

    Article  Google Scholar 

  • Neubold H, Sennett P, Morris H (1982) Abrasiveness of pigments and extenders. Tech Assoc Pulp Pap Ind J 65:90–93

    Google Scholar 

  • Oliveira A, Rocha F, Rodrigues A, Jouanneau J, Dias A, Weber O, Gomes C (2002) Clay minerals from the sedimentary cover from the Northwest Iberian shelf. Prog Oceanogr 52:233–247

    Article  Google Scholar 

  • Parcell S (2002) Sulfur in human nutrition and applications in medicine. Altern Med Rev 7(1):22–44

    Google Scholar 

  • Poensin D, Carpentier P, Féchoz C, Gasparini S (2003) Effects of mud pack treatment on skin microcirculation. Joint Bone Spine 7:367–370

    Article  Google Scholar 

  • Quintela A, Terroso D, Costa C, Almeida SFP, Sá H, Nunes J, Rocha F (2013) Composição mineralógica e diatomológica dos sedimentos argilosos existentes no tanque das Caldeiras da Ribeira Grande: evidências de maturação in situ. In: Proceedings of the 3rd Iberoamerican Congress of peloids pp 76–85

  • Quintela A, Terroso D, Ferreira da Silva E, Rocha F (2012) Certification and quality criteria of peloids in use for therapeutic purposes. Clay Min 47(4):441–451. doi:10.1180/claymin.2012.047.4.04

    Article  Google Scholar 

  • Vallés J, Baschini M, Pettinari G, García N (2004) Characterization of muds and waters of the Copahue geothermal field, Neuquen Province, Patagonia Argentina. In: Proceedings of the 8th International Congress on Applied Mineralogy pp 507–510

  • Veniale F, Barberis E, Carcangiu G, Morandi N, Setti M, Tamanini M, Tessier D (2004) Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Appl Clay Sci 25:135–148

    Article  Google Scholar 

  • Veniale F, Bettero A, Jobstraibizer P, Setti M (2007) Thermal muds: perspectives of innovations. Appl Clay Sci 36:141–147

    Article  Google Scholar 

  • Wallestein N, Duncan A, Chester D, Marques R (2007) Fogo Volcano (São Miguel, Azores): a hazardous edifice. Géomorphol Relief Process Environ 3:259–270

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the TERMAZ Project, promoted by the INOVA Institute and financed by the PROCONVERGÊNCIA UE Programme and the Azores Government, and the Project PEst-C/CTE/UI4035/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Quintela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintela, A., Terroso, D., Costa, C. et al. Characterization and evaluation of hydrothermally influenced clayey sediments from Caldeiras da Ribeira Grande fumarolic field (Azores Archipelago, Portugal) used for aesthetic and pelotherapy purposes. Environ Earth Sci 73, 2833–2842 (2015). https://doi.org/10.1007/s12665-014-3438-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3438-8

Keywords

Navigation