Skip to main content

Advertisement

Log in

Measurements of indoor radon, thoron, and their progeny using twin cup dosimeters in rural areas of Northern India

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Radon, thoron, and their progeny are largest contributors to the radiation dose received by human beings present in the natural environment. The indoor radon depends upon many factors such as building materials, meteorology, ventilation, and occupant’s behavior. This paper presents the measurements of indoor radon, thoron, and their progeny in four villages in rural area of district Kanshiram Nagar (Kasganj) in the state of Uttar Pradesh in Northern India. The concentration of indoor radon and thoron varies from 10.32 to 72.24 and 11.61 to 84.49 Bq m−3 with a geometric mean (GM) of 29.49 and 31.20 Bq m−3, respectively. The concentration of radon and thoron daughters was found to vary from 1.11 to 7.80 and 0.31 to 2.28 mWL, respectively. The annual exposure due to radon and thoron mainly vary from 0.05 to 0.30 WLM. The preliminary results (i.e., bare mode exposure of the LR-115 detectors fixed on cards) of this study have been separately published and compared this recent data with those results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alavanja MCR, Brownson RC, Lubin JH, Berger E, Chang J, Boice JD Jr (1994) Residential radon exposure and lung cancer among nonsmoking women. J Natl Cancer Inst 86:1829–1837. doi:10.1093/jnci/86.24.1829

    Article  Google Scholar 

  • Al-Jarallah MI, Rehman FU, Abdalla K (2008) Comparative study of short and long-term indoor radon measurements. Radiat Meas 43(1):S471–S474. doi:10.1016/j.radmeas.2008.04.053

    Article  Google Scholar 

  • Al-Sheriedeh SA, Bataina BA, Ershaidat NM (2006) Seasonal variations and depth dependence of soil radon concentration levels in different geological formations in Deir Abu-Said District, Irbid–Jordan. Radiat Meas 41:703–707. doi:10.1016/j.radmeas.2006.03.004

    Article  Google Scholar 

  • Arafa W (2002) Permeability of radon-222 through some materials. Radiat Meas 35:207–211

    Article  Google Scholar 

  • Auvinen A, Mäkeläinen I, Hakama M, Castrén O, Pukkala E, Reisbacka H, Rytömaa T (1996) Indoor radon exposure and risk of lung cancer: a nested case-control study in Finland. J Natl Cancer Inst 88(14):966–972. doi:10.1093/jnci/88.14.966

    Article  Google Scholar 

  • Axelson O (1995) Cancer risks from exposure to radon in homes. Environ Health Perspect 103(Suppl 2):37–43. doi:10.1289/ehp.95103s237

    Article  Google Scholar 

  • BEIR VI (1999) The health effects to exposure to indoor radon. Biological effects of ionizing radiation (BEIR) VI report, National Academy of Science, Washington

  • Bochicchio F (2008) The radon issue: considerations on regulatory approaches and exposure evaluations on the basis of recent epidemiological results. Appl Radiat Isot 66:1561–1566. doi:10.1016/j.apradiso.2007.11.019

    Article  Google Scholar 

  • Bochicchio F, Forastiere F, Abeni D, Rapiti E (1998) Epidemiologic studies on lung cancer and residential exposure to radon in Italy and other countries. Radiat Prot Dosim 78(1):33–38

    Article  Google Scholar 

  • Bochicchio F, Ampollini M, Antignani S, Bruni B, Quarto M, Venoso G (2009) Results of the first 5 years of a study on year to year variations of radon concentration in Italian dwellings. Radiat Meas 44:1064–1068. doi:10.1016/j.radmeas.2009.10.088

    Article  Google Scholar 

  • Brugmans MJP, Rispens SM, Bijwaard H, Laurier D, Rogel A, Tomasek L, Tirmarche M (2004) Radon-induced lung cancer in French and Czech miner cohorts described with a two-mutation cancer model. Radiat Environ Biophys 43:153–163. doi:10.1007/s00411-004-0247-6

    Article  Google Scholar 

  • Catelinois O, Rogel A, Laurier D, Billon S, Hemon D, Verger P, Tirmarche M (2006) Lung cancer attributable to indoor radon exposure in France: impact of the risk models and uncertainty analysis. Environ Health Perspect 114(9):1361–1366. doi:10.1289/ehp.9070

    Article  Google Scholar 

  • Chen J, Tokonami S, Sorimachi A, Takahashi H, Falcomer R (2008) Preliminary results of simultaneous radon and thoron tests in Ottawa. Radiat Prot Dosim 130(2):253–256. doi:10.1093/rpd/ncm503

    Article  Google Scholar 

  • Cherouati DE, Djeffal S, Durrani SA (1988) Calibration factor for LR-detectors used for the measurement of alpha activity from radon. Nucl Tracks Radiat Meas 15(1–4):583–586

    Article  Google Scholar 

  • Darby SC, Hill DC (2003) Health effects of residential radon: a European perspective at the end of 2002. Radiat Prot Dosim 104(4):321–329

    Article  Google Scholar 

  • Darby S, Whitley E, Silcocks P, Thakrar B, Green M, Lomas P, Miles J, Reeves G, Fearn T, Doll R (1998) Risk of lung cancer associated with residential radon exposure in South-West England: a case-control study. Br J Cancer 78:394–408. doi:10.1038/bjc.1998.506

    Article  Google Scholar 

  • Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreuzer M, Lagarde F, Mäkeläinen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Schaffrath RA, Tirmarche M, TomáBek L, Whitley E, Wichmann HE, Doll R (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. Br Med J 330:223–227

    Article  Google Scholar 

  • Doi M, Fujimoto K, Kobayashi S, Yonehara H (1994) Spatial distribution of thoron and radon concentration in indoor air of a traditional wooden house. Health Phys 66(1):43–49

    Google Scholar 

  • Durrani SA, Amin YM, Alves JM (1984) Studies of radiation damage in crystals using nuclear-track and thermo-luminescence methods. Nucl Tracks 8(1–4):79–84. doi:10.1016/0735-245X(84)90060-7

    Google Scholar 

  • Eappen KP, Mayya YS (2004) Calibration factors for LR-115 (type-II) based radon thoron discriminating dosimeter. Radiat Meas 38(1):5–17. doi:10.1016/j.radmeas.2003.09.003

    Article  Google Scholar 

  • Espinosa G, Golzarri JI, Bogard J, Gaso I, Ponciano G, Mena M, Segovia N (2008) Indoor radon measurements in Mexico City. Radiat Meas 43:S431–S434. doi:10.1016/j.radmeas.2008.03.039

    Article  Google Scholar 

  • Espinosa G, Golzarri JI, Angeles A, Griffith RV (2009) Nationwide survey of radon levels in indoor workplaces in Mexico using nuclear track methodology. Radiat Meas 44:1051–1054. doi:10.1016/j.radmeas.2009.10.035

    Article  Google Scholar 

  • Field RW, Steck DJ, Smith BJ, Brus CP, Fisher EL, Neuberger JS, Platz CE, Robinson RA, Woolson RF, Lynch CF (2000) Residential radon gas exposure and lung cancer: the Iowa radon lung cancer study. Am J Epidemiol 151(11):1091–1102

    Article  Google Scholar 

  • Fleischer RL, Giard WR, Mogro-Campero A, Turner LG, Alter HW, Gingrich JE (1980) Dosimetry of environmental radon: methods and theory for low-dose integrated measurements. Health Phys 39(6):957–962

    Article  Google Scholar 

  • Gervino G, Barca D, Bruno S, Bonetti R, Manzoni A (2007) Annual average and seasonal variations of indoor radon concentrations in Piedmont (Italy) using three different detection techniques. Nucl Instrum Meth Phys Res A 572(1):254–256. doi:10.1016/j.nima.2006.10.362

    Article  Google Scholar 

  • Guizhi Z, Detao X, Yongjun X (2008) Survey of radon and thoron concentrations in two types of countryside dwellings. Radiat Meas 43:S479–S481. doi:10.1016/j.radmeas.2008.03.012

    Article  Google Scholar 

  • Iyogi T, Hisamatsu S, Inaba J (2006) 222Rn concentrations in greenhouses in Aomori Prefecture Japan. Sci Total Environ 354(2–3):142–149. doi:10.1016/j.scitotenv.2005.01.040

    Article  Google Scholar 

  • Jönsson G (1981) The angular sensitivity of Kodak LR-film to alpha particles. Nucl Instrum Methods Phys Res 190(2):407–414. doi:10.1016/0029-554X(81)90306-2

    Article  Google Scholar 

  • Khan MS, Azam A (2012) Depth dependent study of radon, thoron and their progeny in tube-wells. J Radioanal Nucl Chem 294:289–293. doi:10.1007/s10967-011-1487-y

    Article  Google Scholar 

  • Khan MS, Naqvi AH, Azam A (2008) Study of indoor radon and its progeny levels in rural areas of North India using LR-115 plastic track detectors. Radiat Meas 43:S385–S388. doi:10.1016/j.radmeas.2008.03.026

    Article  Google Scholar 

  • Khan MS, Zubair M, Verma D, Naqvi AH, Azam A, Bhardwaj MK (2011) The study of indoor radon in the urban dwellings using plastic track detectors. Environ Earth Sci 63:279–282. doi:10.1007/s12665-010-0701-5

    Article  Google Scholar 

  • Laurier D, Valenty M, Tirmarche M (2001) Radon exposure and the risk of leukemia: a review of epidemiological studies. Health Phys 81(3):272–288

    Article  Google Scholar 

  • Létourneau EG, Krewski D, Choi NW, Goddard MJ, McGregor RG, Zielinski JM, Du J (1994) Case-control study of residential radon and lung cancer in Winnipeg, Manitoba, Canada. Am J Epidemiol 140(4):310–322

    Google Scholar 

  • Lowder WM (1989) National environmental radioactivity and radon gas. In: Tommasino L et al. (eds) Proceedings of the international workshop on radon monitoring in radioprotection, environmental radioactivity and earth sciences. World Scientific Publisher, New Jersey, pp 1–77

  • Lubin JH, Boice JD Jr (1997) Lung cancer risk from residential radon: meta-analysis of eight epidemiologic studies. J Natl Cancer Inst 89(1):49–57. doi:10.1093/jnci/89.1.49

    Article  Google Scholar 

  • Lubin JH, Wang ZY, Boice JD Jr, Xu ZY, Blot WJ, De Wang L, Kleinerman RA (2004) Risk of lung cancer and residential radon in China: pooled results of two studies. Int J Cancer 109(1):132–137. doi:10.1002/ijc.11683

    Article  Google Scholar 

  • Mayya YS, Eappen KP, Nambi KSV (1998) Methodology for mixed field inhalation dosimetry in monazite areas using a twin cup dosimeter with three track detectors. Radiat Prot Dosim 77(3):177–184

    Article  Google Scholar 

  • Mc Laughlin JP (1989) Aspect of radon and its decay products in indoor air. In: Proceedings of the international workshop on radon monitoring in radioprotection, environmental radioactivity and earth sciences. ICTP, Trieste, pp 51–69

  • Milic G, Jakupi B, Tokonami S, Trajkovic R, Ishikawa T, Celikovic I, Ujic P, Cuknic O, Yarmoshenko I, Kosanovic K, Adrovic F, Sahoo SK, Veselinovic N, Zunic ZS (2010) The concentrations and exposure doses of radon and thoron in residences of the rural areas of Kosovo and Metohija. Radiat Meas 45:118–121. doi:10.1016/j.radmeas.2009.10.052

    Article  Google Scholar 

  • Nikezic D, Yu KN (2005) Are radon gas measurements adequate for epidemiological studies and case control studies of radon-induced lung cancer? Radiat Prot Dosim 113(2):233–235. doi:10.1093/rpd/nch451

    Article  Google Scholar 

  • Omori Y, Tohbo I, Nagahama H, Ishikawa Y, Takahashi M, Sato H, Sekine T (2009) Variation of atmospheric radon concentration with bimodal seasonality. Radiat Meas 44:1045–1050. doi:10.1016/j.radmeas.2009.10.077

    Article  Google Scholar 

  • Papastefanou C, Stoulous S, Monolopoulou M, Ioannidou A, Charalambous S (1994) Indoor radon concentration in Greek apartment dwellings. Health Phys 66(3):270–273

    Article  Google Scholar 

  • Pawel DJ, Puskin JS (2004) The US environmental protection agency’s assessment of risks from indoor radon. Health Phys 87(1):68–74

    Article  Google Scholar 

  • Pershagen G, Åkerblom G, Axelson O, Clavensjö B, Damber L, Desai G, Enflo A, Lagarde F, Mellander H, Svartengren M, Swedjemark GA (1994) Residential radon exposure and lung cancer in Sweden. N Engl J Med 330(3):159–164

    Article  Google Scholar 

  • Puskin JS, James AC (2006) Radon exposure assessment and dosimetry applied to epidemiology and risk estimation. Radiat Res 166(1):193–208. doi:10.1667/RR3308.1

    Article  Google Scholar 

  • Raaschou-Nielsen O, Andersen CE, Andersen HP, Gravesen P, Lind M, Schüz J, Ulbak K (2008) Domestic radon and childhood cancer in Denmark. Epidemiology 19(4):536–543. doi:10.1097/EDE.0b013e318176bfcd

    Google Scholar 

  • Rafique M, Rahman S, Rahman SU, Jabeen S, Shahzad MI, Rathore MH, Matiullah (2010) Indoor radon concentration measurement in the dwellings of district Poonch (Azad Kashmir), Pakistan. Radiat Prot Dosim 138(2):158–165. doi:10.1093/rpd/ncp203

    Article  Google Scholar 

  • Ramachandran TV, Lalit BY, Mishra UC (1987) Measurement of radon permeability through some membranes. Int J Radiat Appl Instrum D Nucl Tracks Radiat Meas 13(1):81–84. doi:10.1016/1359-0189(87)90012-4

    Article  Google Scholar 

  • Ramola RC, Choubey VM, Negi MS, Prasad Y, Prasad G (2008) Radon occurrence in soil–gas and groundwater around an active landslide. Radiat Meas 43:98–101. doi:10.1016/j.radmeas.2007.05.054

    Article  Google Scholar 

  • Ruosteenoja E, Mäkeläinen I, Rytömaa T, Hakulinen T, Hakama M (1996) Radon and lung cancer in Finland. Health Phys 71(2):185–189

    Article  Google Scholar 

  • Sanada T, Fujimoto K, Miyano K, Doi M, Tokonami S, Uesugi M, Takata Y (1999) Measurement of nationwide indoor Rn concentration in Japan. J Environ Radioact 45(2):129–137. doi:10.1016/S0265-931X(98)00085-X

    Article  Google Scholar 

  • Smith BJ, Field RW, Lynch CF (1998) Residential 222Rn and lung cancer: testing the linear no-threshold theory with ecologic data. Health Phys 75(1):11–17

    Article  Google Scholar 

  • Tomasek L (2002) Czech miner studies of lung cancer risk from radon. J Radiol Prot 22(3A):A107–A112. doi:10.1088/0952-4746/22/3A/319

    Article  Google Scholar 

  • Tomasek L, Placek V (1999) Radon exposure and lung cancer risk: Czech cohort study. Radiat Res 152(6s):S59–S63. doi:10.2307/3580116

    Article  Google Scholar 

  • UNSCEAR (1994) United Nations scientific committee on the effects of atomic radiation, ionizing radiation: sources and biological effects. United Nations Publication, New York

    Google Scholar 

  • UNSCEAR (2000) Sources, effects and risks of ionizing radiation. United Nations scientific committee on the effects of atomic radiation, report to the general assembly. United Nations Publication, New York

  • Venoso G, De Cicco F, Flores B, Gialanella L, Pugliese M, Roca V, Sabbarese C (2009) Radon concentrations in schools of the Neapolitan area. Radiat Meas 44(1):127–130. doi:10.1016/j.radmeas.2008.10.002

    Article  Google Scholar 

  • Virk HS, Sharma N (2002) Indoor radon/thoron levels and inhalation doses to some populations in Himachal Pradesh, India. J Environ Mon 4(1):162–165. doi:10.1039/B107793G

    Article  Google Scholar 

  • Wang Z, Lubin JH, Wang LD, Conrath S, Zhang SZ, Kleinerman R, Shang B, Gao SX, Gao PY, Lei SW, Boice JD Jr (1996) Radon measurements in underground dwellings from two prefectures in China. Health Phys 70(2):192–198

    Article  Google Scholar 

  • Wichmann HE, Rosario AS, Heid IM, Kreuzer M, Heinrich J, Kreienbrock L (2005) Increased lung cancer risk due to residential radon in a pooled and extended analysis of studies in Germany. Health Phys 88(1):71–79. doi:10.1097/01.HP.0000142497.31627.86

    Article  Google Scholar 

  • Yoon S, Chang BU, Kim Y, Byun JI, Yun JY (2010) Indoor radon distribution of subway stations in a Korean major city. J Environ Radioact 101(4):304–308. doi:10.1016/j.jenvrad.2010.01.002

    Article  Google Scholar 

  • Zhang Z, Smith B, Steck DJ, Guo Q, Field RW (2007) Variation in yearly residential radon concentration in the upper Midwest. Health Phys 93(4):288–297. doi:10.1097/01.HP.0000266740.09253.10

    Article  Google Scholar 

Download references

Acknowledgments

The Chairman, Department of Applied Physics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh, India, is acknowledged for providing necessary research facilities. One of the author (Mr. M. Shakir Khan) is gratefully acknowledged the financial support by UGC [Ministry of Minority Affairs (MOMA) Scholar] in the form of Junior Research Fellow (JRF). I am highly thankful to my supervisor Dr. M. Mohisin Khan, Department of Applied Physics, AMU, Aligarh for his kind cooperation and help throughout the work carried out under his kind supervision. The authors are thankful to Dr. K. P. Eappen, former Scientist, Environmental Assessment Division, BARC, Mumbai, for his nice comments and suggestions. We are also grateful to the residents, who permitted me to install the detectors in their dwellings. Finally, we thank three anonymous reviewers for their sensible advice, constructive criticism, detailed comments and suggestions, which helped us considerably to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shakir Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.S., Azam, A. Measurements of indoor radon, thoron, and their progeny using twin cup dosimeters in rural areas of Northern India. Environ Earth Sci 71, 1319–1325 (2014). https://doi.org/10.1007/s12665-013-2538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2538-1

Keywords

Navigation