Skip to main content

Advertisement

Log in

Ground-penetrating radar for monitoring the distribution of near-surface soil water content in the Gurbantünggüt Desert

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In the Gurbantünggüt Desert, snowmelt-induced high soil water contents briefly create favorable conditions for the germination and growth of plants every spring. Monitoring the rapidly changing conditions in this time period demands fast and efficient methods for measuring soil water contents at the field scale. For this study, a series of ground-penetrating radar (GPR) measurements were carried out on sites characterized by semi-vegetated dunes both in April 2010 and 2011. We compare water contents calculated from the GPR direct ground wave signal to both point scale validation measurements by time-domain reflectometry (TDR) and gravimetric sampling. Our results show that GPR is an effective method to rapidly obtain a detailed image of the field scale soil water content distribution in the Gurbantünggüt Desert with an accuracy similar to TDR. Observed large scale soil water content variations are dominated by dune topography: During snow melting, melt water was found to trickle slowly from the dune ridges to interdune valleys, increasing the soil water content there while the dune ridges quickly started to dry down. In dune valleys, smaller scale near-surface soil water content changes were dominated by variations in the vegetation coverage, leading to snowmelt funnels at distinct locations: The snowmelt initially occurred around the stems and branches of plants, forming funnel-shaped melt water induced holes through the snow cover and leading to an increasing amount of melt water collected around these plant roots. Our comparison of data from 2010 to 2011 furthermore suggests a temporally stable distribution of near-surface soil water content. This has important ecological significance for controlling desertification and for restoring and reconstructing vegetation in the Gurbantünggüt Desert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berndtsson R, Nodomi K, Yasuda H, Persson T, Chen HS, Jinno K (1996) Soil water and temperature patterns in an Arid desert dune sand. J Hydrol 185:221–240. doi:10.1016/0022-1694(95)02987-7

    Article  Google Scholar 

  • Bogena HR, Huisman JA, Oberdörster C, Vereecken H (2007) Evaluation of a low-cost soil water content sensor for wireless network applications. J Hydrol 344:32–42. doi:10.1016/j.jhydrol.2007.06.032

    Article  Google Scholar 

  • Chen X, Zhang ZC, Chen XH, Shi P (2009) The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest China. Environ Earth Sci 59:811–820. doi:10.1007/s12665-009-0077-6

    Article  Google Scholar 

  • D’ Urso G, Minacapilli M (2006) A semi-empirical approach for surface soil water content estimation from radar data without a priori information on surface roughness. J Hydrol 321:297–310. doi:10.1016/j.jhydrol.2005.08.013

    Article  Google Scholar 

  • Famiglietti JS, Devereaux JA, Laymon CA, Tsegaye T, Houser PR, Jackson TJ, Graham ST, Rodell M, van Oevelen PJ (1999) Ground based investigation of soil moisture variability within remote sensing footprints during the Southern great plains 1997 (SGP97) hydrology experiment. Water Resour Res 35:1839–1851. doi:10.1029/1999WR900047

    Article  Google Scholar 

  • Galagedara LW, Parkin GW, Redman JD (2003) An analysis of the ground-penetrating radar direct ground wave method for soil water content measurement. Hydrol Process 17:3615–3628. doi:10.1002/hyp.1351

    Article  Google Scholar 

  • Galagedara LW, Parkin GW, Redman JD, von Bertoldi P, Endres AL (2005) Field studies of the GPR ground wave method for estimating soil water content during irrigation and drainage. J Hydrol 301:182–197. doi:10.1016/j.jhydrol.2004.06.031

    Article  Google Scholar 

  • Gerhards H, Wollschläger U, Yu QH, Schiwek P, Pan XC, Roth K (2008) Continuous and simultaneous measurement of reflector depth and average soil-water content with multichannel ground-penetrating radar. Geophysics 73(4):J15–J23. doi:10.1190/1.2943669

    Article  Google Scholar 

  • Greco R (2006) Soil water content inverse profiling from single TDR waveforms. J Hydrol 317:325–339. doi:10.1016/j.jhydrol.2005.05.024

    Article  Google Scholar 

  • Huisman JA, Hubbard SS, Redman JD, Annan AP (2003a) Measuring soil water content with ground penetrating radar: a review. Vadose Zone J 2:476–491. doi:10.2113/2.4.476

    Google Scholar 

  • Huisman JA, Snepvangers JJ, Bouten W, Heuvelink GB (2003b) Monitoring temporal development of spatial soil water content variation: comparison of ground penetrating radar and time domain reflectometry. Vadose Zone J 2:519–529. doi:10.2136/vzj2003.5190

    Google Scholar 

  • Klenk P, Buchner JS, Roth K, Wollschläger U, Qin YF (2011) On the reliability of current GPR ground wave methods for determining near-surface water contents. 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR). pp 1–5. doi:10.1109/IWAGPR.2011.5963881

  • Klenk P, Roth K, Qin YF, Zhou KF (2012) Exploring spatial patterns of soil water content in the Urumqi region with Ground-Penetrating Radar. 2012 14th International Conference on Ground Penetrating Radar (ICGPR). pp 713–717. doi:10.1109/ICGPR.2012.6254954

  • Klysz G, Balayssac JP (2007) Determination of volumetric water content of concrete using ground-penetrating radar. Cem Concr Res 37:1164–1171. doi:10.1016/j.cemconres.2007.04.010

    Article  Google Scholar 

  • Li JF (1991) Climate of Xinjiang (in Chinese). China Meteorological Press, Beijing

    Google Scholar 

  • Li XR, Ma FY, Xiao HL, Wang XP, Kim KC (2004) Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China. J Arid Environ 57:1–16. doi:10.1016/S0140-1963(03)00089-2

    Article  Google Scholar 

  • Li J, Zhao CY, Zhu H, Wang F, Wang LJ, Kou SY (2007) Multi-scale heterogeneity of soil moisture following snow thawing in Haloxylon ammodendron shrubland. Sci China Ser D Earth Sci 50:49–55. doi:10.1007/s11430-007-5019-0

    Article  Google Scholar 

  • Ma QL, Wang JH, Li XR, Zhu SJ, Liu HJ, Zhan KJ (2009) Long-term changes of Tamarix-vegetation in the oasis-desert ecotone and its driving factors: implication for dryland management. Environ Earth Sci 59:765–774. doi:10.1007/s12665-009-0072-y

    Article  Google Scholar 

  • Nash MS, Wierenga PJ, Gutjahr A (1991) Time-series analysis of soil-moisture and rainfall along a line transect in arid rangeland. Soil Sci 152:189–198. doi:10.1097/00010694-199109000-00005

    Article  Google Scholar 

  • Qian YB, Wu ZN, Yang Q, Zhang LY, Wang XY (2007a) Ground-surface conditions of sand-dust event occurrences in the southern Junggar Basin of Xinjiang, China. J Arid Environ 70:49–62. doi:10.1016/j.jaridenv.2006.12.001

    Article  Google Scholar 

  • Qian YB, Wu ZN, Zhang LY, Zhao RF, Wang XY, Li YM (2007b) The spatial distribution characteristics of ephemeral plants in the Gurbantünggüt Desert. Chin Sci Bull 52(19):2299–2306

    Google Scholar 

  • Robinson DA, Jonesb SB, Wraithc JM, Ord D, Friedman SP (2003) A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J 2:444–475. doi:10.2113/2.4.444

    Google Scholar 

  • Robinson DA, Campbell CS, Hopman JW, Hornbuckle BK, Jones SB, Knight R, Ogden F, Selker J, Wendroth O (2008) Soil moisture measurement for ecological and hydrological watershed-scale observatories: a review. Vadose Zone J 7:358–389. doi:10.2136/vzj2007.0143

    Article  Google Scholar 

  • Roth K, Schulin R, Fluhler H, Attinger W (1990) Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour Res 26:2267–2273. doi:10.1029/90WR01238

    Google Scholar 

  • Shi XK, Wen J, Wang L, Zhang TT, Tian H, Wang X, Liu R, Zhang JH (2010) Regional soil moisture retrievals and simulations from assimilation of satellite microwave brightness temperature observations. Environ Earth Sci 61:1105–1111. doi:10.1007/s12665-009-0428-3

    Article  Google Scholar 

  • Slob E, Sato M, Olhoeft G (2010) Surface and borehole ground-penetrating-radar developments. Geophysics 75(5):75A103–75A120. doi:10.1190/1.3480619

    Google Scholar 

  • Song XF, Wang P, Yu JJ, Liu X, Liu JR, Yuan RQ (2011) Relationships between precipitation, soil water and groundwater at Chongling catchment with the typical vegetation cover in the Taihang mountainous region, China. Environ Earth Sci 62:787–796. doi:10.1007/s12665-010-0566-7

    Article  Google Scholar 

  • Steelman CM, Endres AL (2009) Evolution of high-frequency ground-penetrating radar direct ground wave propagation during thin frozen soil layer development. Cold Reg Sci Technol 57:116–122. doi:10.1016/j.coldregions.2009.01.007

    Article  Google Scholar 

  • Suleman S, Wood MK, Shaht BH, Murray L (1995) Development of a rainwater harvesting system for increasing soil moisture in arid rangelands of Pakistan. J Arid Environ 31:471–481. doi:10.1016/S0140-1963(05)80130-2

    Article  Google Scholar 

  • Topp GC, Reynolds WD (1998) Time domain reflectometry: a seminal technique for measuring mass and energy in soil. Soil Tillage Res 47:125–132. doi:10.1016/S0167-1987(98)00083-X

    Article  Google Scholar 

  • Topp GC, Davis JL, Annan AP (2003) The early development of TDR for soil measurements. Vadose Zone J 2:492–499. doi:10.2136/vzj2003.4920

    Google Scholar 

  • Ulaby FT, Dubois PC, van Zyl J (1996) Radar mapping of surface soil moisture. J Hydrol 184:57–84. doi:10.1016/0022-1694(95)02968-0

    Article  Google Scholar 

  • van Overmeeren RA, Sariowan SV, Gehrels JC (1997) Ground penetrating radar for determining volumetric soil water content; Results of comparative measurements at two test sites. J Hydrol 197:316–338. doi:10.1016/S0022-1694(96)03244-1

    Article  Google Scholar 

  • Wang XQ, Jiang J, Wang YC, Luo WL, Song CW, Chen JJ (2006) Responses of ephemeral plant germination and growth to water and heat conditions in the southern part of Gurbantünggüt Desert. Chin Sci Bull 51(Supp I):110–116. doi:10.1007/s11434-006-8214-z

  • Weihermüller L, Huisman JA, Lambot S, Herbst M, Vereecken H (2007) Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. J Hydrol 340:205–216. doi:10.1016/j.jhydrol.2007.03.013

    Article  Google Scholar 

  • Westermann S, Wollschläger U, Boike J (2010) Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar. Cryosphere 4:475–487. doi:10.5194/tc-4-475-2010

    Article  Google Scholar 

  • Wilcox CS, Fergusona JW, Fernandez GCJ, Nowak RS (2004) Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite. J Arid Environ 56:129–148. doi:10.1016/S0140-1963(02)00324-5

    Article  Google Scholar 

  • Xu DH, Li JH, Fang HW, Wang G (2007) Changes in soil water content in the rhizosphere of Artemisia ordosica: evidence for hydraulic lift. J Arid Environ 69:545–553. doi:10.1016/j.jaridenv.2006.11.001

    Article  Google Scholar 

  • Yang HF, Qian YB, Jiang C, Zhao RF (2010) Spatial heterogeneity of soil chemical properties in the south Gurbantünggüt Desert. J Desert Res 30(2):319–325

    Google Scholar 

  • Yang ZP, Hua OY, Zhang XZ, Xu XL, Zhou CP, Yang WB (2011) Spatial variability of soil moisture at typical alpine meadow and steppe sites in the Qinghai-Tibetan Plateau permafrost region. Environ Earth Sci 63:477–488. doi:10.1007/s12665-010-0716-y

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant No. 41101429 and 41271437) and Technological Supporting Project of Xinjiang Uygur Autonomous Region (Grant No. 201216147). We thank all the helping hands during data taking and evaluation, especially the technical support by the Institute of Environmental Physics, Heidelberg University. Funding provided by the German Federal Ministry for Science and Education through the “BMBF future megacities” program project “RECAST Urumqi” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfang Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Y., Chen, X., Zhou, K. et al. Ground-penetrating radar for monitoring the distribution of near-surface soil water content in the Gurbantünggüt Desert. Environ Earth Sci 70, 2883–2893 (2013). https://doi.org/10.1007/s12665-013-2528-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2528-3

Keywords

Navigation