Skip to main content
Log in

Relationship between hydrogeological parameters for data-scarce regions: the case of the Araripe sedimentary basin, Brazil

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper applies and validates a method for generating spatially distributed hydraulic conductivity (k) based on the specific capacity (Q s) for data-scarce regions. This method has been applied to the Araripe sedimentary basin, Brazil, and consists of four steps: (1) selection of (32) wells for which both k and Q s data are available; (2) estimation of k as a function of Q s for the (128) wells for which only specific capacity data are available; (3) spatial distribution of k using the kriging geostatistical tool; (4) validation of the method, using (17) representative wells with k measured data. The equation relating k and Q s showed a statistically significant linear relationship (R = 0.93), from which a database has been generated using kriging with the spherical model. The results showed a calibration coefficient of Nash and Sutcliffe (NS) of 0.54 and moderate spatial dependence ratio of 69 %. The validation process provided only a moderate efficiency (NS = 0.22), possibly due to the geological complexity of the focus system. Despite its limitations, the method indicates the possibility of application of ordinary kriging to generate reliable data from auxiliary variables, especially for the water management of data-scarce areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acheampong SY, Hess JW (1998) Hydrogeologic and hydrochemical framework of the groundwater system in the southern Voltaian sedimentary basin, Ghana. Hydrogeol J 6:527–537

    Google Scholar 

  • Benson RC, Yuhr L (1993) Spatial sampling considerations and their applications to characterizing fractured rock and karst systems. Environ Geol 22:296–307. doi:10.1007/BF00767501

    Article  Google Scholar 

  • CAGECE (Companhia de Água e Esgoto do Estado do Ceará) (1984) Captação de Juazeiro do Norte—Condição de exploração dos poços. Governo do Estado do Ceará, Fortaleza

  • Carvalho JRP, Assad ED (2005) Spatial analysis of precipitation data in São Paulo state: comparison of interpolation methods. Eng Agríc 25:377–384

    Article  Google Scholar 

  • SRH (Secretaria de Recursos Hídricos do Estado do Ceará) (2005) Implantação do sistema de monitoramento/gestão de uma área piloto do aquífero Missão Velha, na Bacia Sedimentar do Araripe. Fortaleza, pp 8–13

  • Chen LH, Chen CT, Pan YG (2010) Groundwater level prediction using SOMRBFN multisite model. J Hydrol Eng 8:624–631

    Article  Google Scholar 

  • Cooper Junior HH, Jacob CE (1946) A generalized graphical method of evaluating formation constants and summarizing well-filed history. Trans Am Geophys Un 27:526–534

    Article  Google Scholar 

  • de Andrade ARS, Guerrini IA, Garcia CJB, Katez I, Guerra HOC (2005) Spatial variability of the soil density in the irrigation management. Ciênc Agrotec 29:322–329

    Article  Google Scholar 

  • de Araújo JC, Piedra JIG (2009) Comparative hydrology: analysis of a semiarid and a humid tropical watershed. Hydrol Process 23:1169–1178

    Article  Google Scholar 

  • de Lima JS S, Oliveira PC, de Oliveira RB, Xavier AC (2008) Geostatistic methods used in the study of soil penetration resistance in tractor traffic trail during wood harvesting. Rev Árvore 32:931–938. doi:10.1590/S0100-67622008000500018

    Article  Google Scholar 

  • Dupuit J (1863) Études théoriques et pratiques sur le mouvement des eaux dans lês canaux découverts et à travers lês terrains perméables, 2nd edn. Dunod, Paris

    Google Scholar 

  • Fabbri P (1997) Transmissivity in the geothermal Euganean basin: a geostatistical analysis. Ground Water 35:881–887. doi:10.1111/j.1745-6584.1997.tb00156.x

    Article  Google Scholar 

  • Faraco MA, Uribe-Opazo MA, da Silva EAA, Johann JA, Borssoi JA (2008) Selection criteria of spatial variability models used in thematical maps of soil physical attributes and soybean yield. Rev Bras Ciênc Solo 32:463–476

    Article  Google Scholar 

  • Grego CR, Vieira SR (2005) Spatial variability of soil physical properties on an experimental plot. Rev Bras Ciênc Solo 29:169–177

    Article  Google Scholar 

  • Hamm SY, Cheong JY, Jang S, Jung CY, Kim BS (2005) Relationship between transmissivity and specific capacity in the volcanic aquifers of Jeju Island, Korea. J Hydrol 310:111–121

    Article  Google Scholar 

  • Huntley D, Nommensen R, Steffey D (1992) Use of specific capacity to assess transmissivity in fractured-rock aquifers. Ground Water 30:396–402. doi:10.1111/j.1745-6584.1992.tb02008.x

    Article  Google Scholar 

  • IBGE (Instituto Brasileiro de Geografia e Estatística) (2010) Banco de dados. http://www.ibge.gov.br/cidadesat/topwindow.htm?1. Accessed 20 February 2011

  • Isaaks EH, Srivastava M (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Jacob CE (1950) Flow of groundwater Engineering Hydraulics. Wiley, New York

    Google Scholar 

  • Jalludin M, Razack M (2004) Assessment of hydraulic properties of sedimentary and volcanic aquifer systems under arid conditions in the Republic of Djibouti (Horn of Africa). Hydrogeol J 12:159–170

    Article  Google Scholar 

  • Li J, Heap AD (2011) A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol Inform 6:228–241

    Article  Google Scholar 

  • Liu G, Craig JR, Soulis ED (2011) Applicability of the Green-Ampt infiltration model with shallow boundary conditions. J Hydrol Eng 16:266–274

    Article  Google Scholar 

  • Mace RE (1997) Determination of transmissivity from specific capacity test in a karst aquifer. Ground Water 35:738–742. doi:10.1111/j.1745-6584.1997.tb00141.x

    Article  Google Scholar 

  • Machado CJF, Santiago MFS, Mendonça LAR, Firschron H, Mendes Filho J (2007) Hydrochemical and flow modeling of aquitard percolation in the Cariri Valley-Northeast Brazil. Aquat Geochem 13:187–196

    Article  Google Scholar 

  • Malveira VTC, de Araújo JC, Güntner A (2012) Hydrological impact of a high-density reservoir network in the semiarid North-Eastern Brazil. J Hydrol Eng 17:109–117. doi:10.1061/(ASCE)HE.1943-5584.0000404

    Article  Google Scholar 

  • Mc Bratney AB, Webster R (1986) Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. J Soil Sci 37:617–639. doi:10.1111/j.1365-2389.1986.tb00392.x

    Article  Google Scholar 

  • Mendonça LAR, Frischkorn H, Santiago MF, Mendes Filho J (2005) Isotope measurements and ground water flow modeling using MODFLOW for understanding environmental changes caused by a well field in semiarid Brazil. Environ Geol 47:1045–1053

    Article  Google Scholar 

  • CPRM (Companhia de Pesquisa de Recursos Minerais) (2010) SIAGAS—Sistema de Informações de Águas Subterrâneas. http://siagasweb.cprm.gov.br/layout/index.php. Accessed 10 March 2010

  • DNPM (Departamento Nacional de Produção Mineral) (1996) Projeto avaliação hidrogeológica da bacia sedimentar do Araripe. Recife, p 103

  • Montebeller CA, Ceddia MB, de Carvalho DF, Vieira SR, Franco EM (2007) Spatial variability of the rainfall erosive potential in the state of Rio de Janeiro, Brazil. Eng Agríc 27:426–435. doi:10.1590/S0100-69162007000300011

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting models: model calibration and uncertainty through conceptual models I: a discussion of prediction. J Hydrol 103:282–290

    Article  Google Scholar 

  • Panosso AR, Pereira GT, Marques Júnior J, La Scala Júnior N (2008) Spatial variability of CO2 emission on Oxisol soils cultivated with sugar cane under different management practices. Eng Agríc 28:227–236

    Article  Google Scholar 

  • Patriarche D, Castro MC, Goovaerts P (2005) Estimating regional hydraulic conductivity fields—a comparative study of geostatistical methods. Math Geol 37:587–613

    Article  Google Scholar 

  • Razack M, Huntley D (1991) Assessing transmissivity from specific capacity in a large and heterogeneous alluvial aquifer. Ground Water 29:856–861. doi:10.1111/j.1745-6584.1991.tb00572.x

    Article  Google Scholar 

  • Razack M, Lasm T (2006) Geostatistical estimation of the transmissivity in a highly fractured metamorphic and crystalline aquifer (Man-Danane region, western Ivory Coast). J Hydrol 325:164–178. doi:10.1016/j.jhydrol.2005.10.014

    Article  Google Scholar 

  • Rotzoll K, El-Kadi AI (2008) Estimating hydraulic conductivity from specific capacity for Hawaii aquifers, USA. Hydrogeol J 16:969–979

    Article  Google Scholar 

  • Sá FT (2004) As águas subterrâneas no município de Barbalha, Ceará, Brasil. Dissertation, Federal University of Ceará

  • Srivastav SK, Lubczynski MW, Biyani AK (2007) Upscaling of transmissivity, derived from specific capacity: a hydrogeomorphological approach applied to the Doon valley aquifer system in India. Hydrogeol J 15:1251–1264. doi:10.1007/s10040-007-0207-8

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and the duration of discharge of a well using groundwater storage. Trans Am Geophys Un 16:519–524

    Article  Google Scholar 

  • Thiem G (1906) Hidrologische methoden. J. M. Gebhardt’s Verlag, Leipzig

    Google Scholar 

  • Trabelsi F, Tarhouni J, Mammou AB, Ranieri G (2011) GIS-based subsurface databases and 3-D geological modeling as a tool for the set up of hydrogeological framework: Nabeul–Hammamet coastal aquifer case study (Northeast Tunisia). Environ Earth Sci. doi:10.1007/s12665-011-1416-y

    Google Scholar 

  • Trangmar BB, Yost RS, Uehara G (1986) Application of geostatistics to spatial studies of soil properties. Adv Agron 38:45–94. doi:10.1016/S0065-2113(08)60673-2

    Article  Google Scholar 

  • Verbovsek T (2008) Estimation of transmissivity and hydraulic conductivity from specific capacity and specific capacity index in dolomite aquifers. J Hydrol Eng 13:817–823

    Article  Google Scholar 

  • Verbovsek T, Veselic M (2008) Factors influencing the hydraulic properties of wells in dolomite aquifers of Slovenia. Hydrogeol J 16:779–795. doi:10.1007/s10040-007-0250-5

    Article  Google Scholar 

  • Vieira SR (2000) Geoestatística em estudos de variabilidade espacial do solo. In: Novais RF, Alvarez VH, Schaefer GR (eds) Tópicos em ciência do solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 1–54

    Google Scholar 

  • Zhao H, Ma F, Li G, Zhang Y, Guo J (2012) Study of the hydrogeological characteristics and permeability of the Xinli seabed gold mine in Laizhou Bay, Jiaodong Peninsula, China. Environ Earth Sci 65:2003–2014. doi:10.1007/s12665-011-1181-y

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Capes—Brazilian Coordination for the Improvement of Higher Education Personnel—for the scholarship granted to the first author; CNPq—Brazilian National Council of Scientific and Technologic Development—for the financial support of the research (process 483270/2010-5); and COGERH—Water Resources Management Company of Ceará—in Crato, for providing important data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sávio de Brito Fontenele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Brito Fontenele, S., Mendonça, L.A.R., de Araújo, J.C. et al. Relationship between hydrogeological parameters for data-scarce regions: the case of the Araripe sedimentary basin, Brazil. Environ Earth Sci 71, 885–894 (2014). https://doi.org/10.1007/s12665-013-2491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2491-z

Keywords

Navigation