Skip to main content
Log in

Estimation of net primary productivity using a process-based model in Gansu Province, Northwest China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The ecological structure in the arid and semi-arid region of Northwest China with forest, grassland, agriculture, Gobi, and desert, is complex, vulnerable, and unstable. It is a challenging and sustaining job to keep the ecological structure and improve its ecological function. Net primary productivity (NPP) modeling can help to improve the understanding of the ecosystem, and therefore, improve ecological efficiency. The boreal ecosystem productivity simulator (BEPS) model provides the possibility of NPP modeling in terrestrial ecosystem, but it has some limitations for application in arid and semi-arid regions. In this paper, we improve the BEPS model, in terms of its water cycle by adding the processes of infiltration and surface runoff, to be applicable in arid and semi-arid regions. We model the NPP of forest, grass, and crop in Gansu Province as an experimental area in Northwest China in 2003 using the improved BEPS model, parameterized with moderate resolution remote sensing imageries and meteorological data. The modeled NPP using improved BEPS agrees better with the ground measurements in Qilian Mountain than that with original BEPS, with a higher R 2 of 0.746 and lower root mean square error (RMSE) of 46.53 gC m−2 compared to R 2 of 0.662 and RMSE of 60.19 gC m−2 from original BEPS. The modeled NPP of three vegetation types using improved BEPS shows evident differences compared to that using original BEPS, with the highest difference ratio of 9.21 % in forest and the lowest value of 4.29 % in crop. The difference ratios between different vegetation types lie on the dependence on natural water sources. The modeled NPP in five geographic zones using improved BEPS is higher than those with original BEPS, with higher difference ratio in dry zones and lower value in wet zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Source: Ministry of Commerce of the People’s Republic of China Website (http://english.mofcom.gov.cn/aroundchina/Gansu.shtml).

  2. Refer to: Baidu (http://baike.baidu.com/view/8461.htm) and Wikipedia (http://en.wikipedia.org/wiki/Gansu).

References

  • Chen JM, Liu J, Cihlar J, Guolden ML (1999) Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing application. Ecol Model 124:99–119

    Article  Google Scholar 

  • Chen JM, Chen XY, Ju WM, Geng XJ (2005) Distribution hydrological model for mapping evapotranspiration using remote sensing inputs. J Hydrol 305:15–39

    Article  Google Scholar 

  • Chen XF, Chen JM, An SQ, Ju WM (2007) Effects of topography on simulated net primary productivity at landscape scale. J Environ Manage 85:585–596

    Article  Google Scholar 

  • Feng XF, Liu GH, Chen JM, Chen MZ, Liu J, Ju WM, Sun R, Zhou WZ (2007) Net primary productivity of China’s terrestrial ecosystem from a process model driven by remote sensing. J Environ Manage 85:563–573

    Article  Google Scholar 

  • Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cycles 10(4):603–628

    Article  Google Scholar 

  • Hunt ER Jr, Running SW (1992) Simulated dry matter yields for aspen and spruce stand in the North American Boreal Forest. Can J Remote Sensing 18:126–133

    Google Scholar 

  • Ju WM, Chen JM, Black TA, Barr AG, Liu J, Chen BZ (2006) Modelling multi-year coupled carbon and water flues in a boreal aspen forest. Agric For Meteorol 140:136–151

    Article  Google Scholar 

  • Leith H, Whittaker RH (1975) Primary productivity of the biosphere. Springer-Verlag, New York

    Book  Google Scholar 

  • Liu MG (2010) Atlas of physical geography of China. SinoMaps Press, Beijing

    Google Scholar 

  • Liu J, Chen JM, Cihlar J, Park W (1997) A process—based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens Environ 62:158–175

    Article  Google Scholar 

  • Liu J, Chen JM, Cihlar J, Chen W (1999) Net primary productivity distribution in the boreal region from a process model using satellite and surface data. J Geophys Res 104(D22):27735–27754

    Article  Google Scholar 

  • Liu J, Chen JM, Cihlar J, Chen W (2002) Net primary productivity mapped for Canada at 1-km resolution. Glob Ecol Biogeogr 11:115–129

    Article  Google Scholar 

  • Liu J, Chen JM, Cihlar J (2003) Mapping evapotranspiration based on remote sensing: an application to Canada’s landmass. Water Resour Res 39(7):1189–1203

    Article  Google Scholar 

  • Liu CM, Wang ZG, Zhen HX, Zhang L, Wu XF (2008) Development and applications of HIMS system and its modules. Scientia Sinica Technologica 38(3):350–360 (in Chinese)

    Google Scholar 

  • Liu JF, Xiao WF, Guo CM, Wu HP, Jiang ZP (2011a) Pattern analysis of net primary productivity of China terrestrial vegetation using 3-PGS model. Scientia Silvae Sinicae 47(5):16–22 (in Chinese with English abstract)

    Google Scholar 

  • Liu X, He B, Li Z, Zhang J, Wang L, Wang Z (2011b) Influence of land terracing on agricultural and ecological environment in the loess plateau regions of China. Environ Earth Sci 62:797–807

    Article  Google Scholar 

  • Lu L, Li X, Veroustraete F (2005) Terrestrial net primary productivity and its spatial-temporal variability in western China. Acta Ecologica Sinica 25(5):1026–1032 (in Chinese with English abstract)

    Google Scholar 

  • Matsushita B, Tamura M (2002) Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia. Remote Sens Environ 81(1):58–66

    Article  Google Scholar 

  • Matsushita B, Xu M, Chen J, Kameyama S, Tamura M (2004) Estimation of regional net primary productivity (NPP) using a process-based ecosystem model: how important is the accuracy of climate data? Ecol Model 178:371–388

    Article  Google Scholar 

  • Piao SL, Fang JY (2002) Terrestrial net primary production and its spatio-temporal patterns in Qinghai-Xizang Plateau, China during 1982–1999. J Nat resour 17(3):373–380 (in Chinese with English abstract)

    Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Kloster SA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles 7(4):811–841

    Article  Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol Model 42:125–154

    Article  Google Scholar 

  • Soulis ED, Snelgrove KR, Kouwen N, Seglenieks F, Verseghy DL (2000) Towards closing the vertical water balance in Canadian atmospheric models: coupling of the land surface scheme class with the distributed hydrological model watflood. Atmos Ocean 38:251–269

    Article  Google Scholar 

  • Sun R, Zhu QJ (2000) Distribution and seasonal change of net primary productivity in China from April, 1922 to March, 1993. Acta Geographica Sinica 55(1):36–45 (in Chinese with English abstract)

    Google Scholar 

  • Wang PJ, Sun R, Zhu QJ, Xie DH, Chen JM (2006) Improvement on the abilities of BEPS under accidented terrain. J Imag Gr 11(7):1017–1025 (in Chinese with English abstract)

    Google Scholar 

  • Wang PJ, Sun R, Hu JC, Zhu QJ, Zhou YY, Li L, Chen JM (2007) Measurements and simulation of forest leaf area index and net primary productivity in Northern China. J Environ Manage 85:607–615

    Article  Google Scholar 

  • Wang B, Yang S, Lv C, Zhang J, Wang Y (2010) Comparison of net primary productivity in karst and non-karst areas: a case study in Guizhou Province, China. Environ Earth Sci 59:1337–1347

    Article  Google Scholar 

  • Winslow JC, Hunt ER, Piper SC (2001) A globally applicable model of daily solar irradiance estimated from air temperature and precipitation data. Ecol Model 143:227–243

    Article  Google Scholar 

  • Zhang J, Pan XL (2010) Spatial pattern and seasonal dynamics of net primary productivity in mountain—oasis—desert ecosystem on the north piedmont of Tianshan Mountains in arid north-west China. Arid Land Geography 33(1):78–86 (in Chinese with English abstract)

    Google Scholar 

  • Zhang Y, Zhou G (2011) Exploring the effects of water on vegetation change and net primary productivity along the IGBP Northeast China Transect. Environ Earth Sci 62:1481–1490

    Article  Google Scholar 

  • Zhang KK, Bu CF, Gao GX (2011) Effect of microbiotic crust on soil water infiltration in the loess plateau. Arid Zone Res 28(5):808–812 (in Chinese with English abstract)

    Google Scholar 

  • Zhou WZ, Liu GH, Pan JJ, Feng XF (2005) Distribution of available soil water capacity in China. J Geog Sci 15(1):3–12

    Google Scholar 

  • Zhou YY, Zhu QJ, Chen JM, Wang YQ, Liu J, Sun R (2007) Observation and simulation of net primary productivity in Qilian Mountain, western China. J Environ Manage 85:574–584

    Article  Google Scholar 

  • Zhou X, Yan Y, Wang H, Zhang F, Wu L, Ren J (2011) Assessment of eco-environment vulnerability in the northeastern margin of the Qinghai-Tibetan Plateau, China. Environ Earth Sci 63:667–674

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. J. Chen and his group in affording the initial BEPS model. We also gratefully acknowledge the anonymous reviewers for their valuable comments on the manuscript. The study was funded by the National Natural Science Foundation of China (No. 40901170 and 41071224), the Basic Research and Operating Expenses of CAMS (No. 2010Y004), and the National Basic Research Program of China (No. 2010CB951304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Xie, D., Zhou, Y. et al. Estimation of net primary productivity using a process-based model in Gansu Province, Northwest China. Environ Earth Sci 71, 647–658 (2014). https://doi.org/10.1007/s12665-013-2462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2462-4

Keywords

Navigation