Skip to main content
Log in

Silicon and sediment transport of the Changjiang River (Yangtze River): could the Three Gorges Reservoir be a filter?

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Water samples were collected from the Changjiang River (Yangtze River) in May 2005, after the impoundment of the Three Gorges Reservoir (TGR), to examine the influence of the TGR and large lakes on material delivery to the estuary of the Changjiang River. The concentrations of suspended particle material (SPM), dissolved silica (DSi) and biogenic silica (BSi) in the main stream were analyzed. The concentrations of DSi and BSi in the main channel of the Changjiang varied between 73 and 100 and 1.1–15 μmol/l, with a distance weighted average of 81 and 8.0 μmol/l, respectively. A calculation shows that live diatom comprises only an average value of 5.2 % of the BSi in the Changjiang River, and most of BSi may come from drainage basin. The concentrations of BSi and the ratios of BSi/SPM were relatively low in the Changjiang River compared to other rivers throughout the world, but the BSi carried in suspension by the Changjiang River was an important component of the rivers silicon load (i.e. ~13 %). SPM, DSi and BSi concentrations as observed in the Changjiang River tend to decrease from the upper sections of the river to the Three Gorges Dam (TGD), reflecting sedimentation associated with BSi trapping and DSi retention in the TGR in the normal-water period. SPM and BSi retention are more strongly influenced by the TGD compared to DSi. About 98 % of SPM, 72 % of BSi and 16 % of DSi were retained within the TGR in May 2005. The fluxes variations of DSi, BSi and SPM suggested that the large lakes and dams had a coupled effect on the transportation of DSi, BSi and SPM in the normal-water period. Such a change in silicon (DSi and BSi) balances of the Changjiang River will affect the ecological environment of the Changjiang estuary and its adjacent sea to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bennekom VAJ, Salomons W (1981) Pathways of nutrients and organic matter from land to ocean through rivers. In: Martine JM (ed) River inputs to ocean systems. UNEP/UNESCO, Rome, pp 33–51

    Google Scholar 

  • Bennekom VAJ, Gieskes WWC, Tijssen SB (1975) Eutrophication of Dutch coastal waters. Proc R Soc B 189:359–374

    Article  Google Scholar 

  • Billen G, Lancelot C, Meybeck M (1991) N, P and Si retention along the aquatic continuum from land to ocean. In: Mantoura RFC (ed) Ocean margin processes in global change. Wiley, Chichester, pp 19–44

    Google Scholar 

  • Billen G, Garnier J, Mouchel JM, Silvetsre M (2007) The Seine system: introduction to a multidisciplinary approach of the functioning of a regional river system. Sci Total Environ 375(1/3):1–12. doi:10.1016/j.scitotenv.2006.12.001

    Article  Google Scholar 

  • Cary L, Alexandre A, Meunier JD, Boeglin JL, Braun JJ (2005) Contribution of phytoliths to the suspended load of biogenic silica in the Nyong basin rivers (Cameroon). Biogeochemistry 74:101–114. doi:10.1007/s10533-004-2945-1

    Article  Google Scholar 

  • Changjiang River Water Resource Committee (1955–1999) Hydrological Yearbooks of the People’s Republic of China. China Water Power Press, Beijing

  • Changjiang Water Resources Commission (2001) Changjiang sediment bulletin. China Water Power Press, Beijing

    Google Scholar 

  • Changjiang Water Resources Commission (2005) Changjiang sediment bulletin. China Water Power Press, Beijing

  • Changjiang Water Resources Commission (2006) Changjiang sediment bulletin. China Water Power Press, Beijing

  • Changjiang Water Resources Commission (2007) Changjiang sediment bulletin. China Water Power Press, Beijing

  • Chen Z, Li J, Shen H, Wang Z (2001) Changjiang of China: historical analysis of discharge variability and sediment flux. Geomorphology 41:77–91. doi:10.1016/S0169-555X(01)00106-4

    Article  Google Scholar 

  • Chen JS, Wang F, Xia X, Zhang L (2002) Major element chemistry of the Changjiang (Yangtze River). Chem Geol 187:231–255. doi:10.1016/S0009-2541(02)00032-3

    Article  Google Scholar 

  • Chen HT, Zhang XQ, Mi TZ, Yu ZG (2007) Improvement and application of method for the measurement of biogenic silica in suspended matter. Acta Oceanol Sin 29(4):156–160

    Google Scholar 

  • Chetelat B, Liu CQ, Zhao ZQ, Wang QL, Li SL, Li J, Wang BL (2008) Geochemistry of the dissolved load of the Changjiang Basin rivers: anthropogenic impacts and chemical weathering. Geochim Cosmochim Acta 72:4254–4277. doi:10.1016/j.gca.2008.06.013

    Article  Google Scholar 

  • Cociasu A, Dorogan L, Humborg C, Popa L (1996) Long-term ecological changes in the Black Sea. Mar Pollut Bull 32:32–38. doi:10.1016/0025-326X(95)00106-W

    Article  Google Scholar 

  • Conley DJ (1997) Riverine contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr 42:774–777. doi:10.4319/lo.1997.42.4.0774

    Article  Google Scholar 

  • Conley DJ, Schelske CL, Stoermer EF (1993) Modification of the biogeochemical cycle of silica with eutrophication. Mar Ecol Prog Ser 101:179–192

    Article  Google Scholar 

  • Cugier P, Billen G, Guillaud JF, Garnier J, Ménesguen A (2005) Modelling eutrophication of the Seine Bight under present, historical and future Seine river nutrient loads. J Hydrol 304:381–396. doi:10.1016/j.jhydrol.2004.07.049

    Article  Google Scholar 

  • Dai ZJ, Du JZ, Li JF, Li WH, Chen JY (2008) Runoff characteristics of the Changjiang river during 2006: effect of extreme drought and the impounding of the Three George Dam. Geophy Res Lett. doi:10.1029/2008GL033456

    Google Scholar 

  • Dai Z, Du J, Zhang X, Su N, Li J (2011) Variation of riverine material loads an environmental consequences on the Changjiang (Yangtze) Estuary in recent decades (1955–2008). Environ Sci Technol 45:223–227. doi:10.1021/es103026a

    Article  Google Scholar 

  • Dean WE, Gorham E (1998) Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535–538

    Article  Google Scholar 

  • Ding T, Wan T, Wang C, Zhang F (2004) Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochim Cosmochim Acta 68(2):205–216. doi:10.1016/S0016-7037(03)00264-3

    Article  Google Scholar 

  • Duan SW, Xu F, Wang LJ (2007) Long-term changes in nutrient concentrations of the Changjiang River and principal tributaries. Biogeochemistry 85:215–234. doi:10.1007/s10533-007-9130-2

    Article  Google Scholar 

  • Dubravko J, Nancyn R, Eugene RT (1995) Stoichiometric nutrient balance and origin of coastal eutrophication. Mar Pollut Bull 30:41–46. doi:10.1016/0025-326X(94)00105-I

    Article  Google Scholar 

  • Edmond JM, Palmer MR, Measures CI, Brown ET, Huh Y (1995) The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia and Brazil. Geochim Cosmochim Acta 59:3301–3325. doi:10.1016/0016-7037(95)00128-M

    Article  Google Scholar 

  • Friedl G, Teodoru C, Wehrli B (2004) Is the Iron Gate I Reservoir on the Danube River a sink for dissolved silica? Biogeochemistry 68:21–32. doi:10.1023/B:BIOG.0000025738.67183.c0

    Article  Google Scholar 

  • Garnier J, Leporcq B, Sanchez N, Philippon X (1999) Biogeochemical mass-balance(C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemistry 47:119–146

    Google Scholar 

  • Glover RM (1982) Diatom fragmentation in Grand Traverse Bay, Lake Michigan and its implication for silica cycling. Dissertation, University of Michigan, Ann Arbor, Michigan

  • Guo HB (2008) The study of silicon distribution, budget and circle in the Three Gorges Reservoir. Dissertation, Ocean University of China

  • Halim Y (1991) The impact of human alterations of the hydrological cycle on ocean margins. In: Mantoura RFC (ed) Ocean margin processes in global change. Wiley, New York, pp 301–327

    Google Scholar 

  • Humborg C, Ittekkot V, Cociasu A, Bodungen B (1997) Effect of Danube river dam on Black Sea biogeochemistry and ecosystem structure. Nature 386:385–388. doi:10.1038/386385a0

    Article  Google Scholar 

  • Humborg C, Pastuszak M, Aigars J, Siegmund H, Moerth CM (2006) Decreased silica land-sea fluxes through damming in the Baltic Sea catchment-significance of particle trapping and hydrological alterations. Biogeochemistry 77(2):265–281. doi:10.1007/s10533-005-1533-3

    Article  Google Scholar 

  • Kimmel BL, Lind OT, Paulson LJ (1990) Reservoir primary production. In: Thornton KW (ed) Reservoir limnology: ecological perspectives. Wiley, New York

    Google Scholar 

  • Li MT, Chen HQ (2001) Changes of dissolved silicate flux from the Changjiang River into sea and its influence since late 50 years. China Environ Sci 21(3):1–5

    Google Scholar 

  • Li JX, Liao WG, Huang ZL (2002) Prediction of the impact of Three Gorges Project on water flow and water quality in the reservoir. Water Resour Hydropower Eng 33:22–26

    Google Scholar 

  • Li MT, Xu KX, Watanabe M, Chen ZY (2007) Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuar Coast Shelf Sci 71:3–12. doi:10.1016/j.ecss.2006.08.013

    Article  Google Scholar 

  • Liu SM, Zhang J, Chen HT, Wu Y, Xiong H, Zhang ZF (2003) Nutrients in the Changjiang and its tributaries. Biogeochemistry 62(1):1–18

    Article  Google Scholar 

  • McGinnis DF, Bocaniov S, Teodoru C, Friedl G, Lorke A, Wüest A (2006) Silica retention in the Iron Gate I reservoir on the Danube River: the role of side bays as nutrient sinks. River Res Appl 22(4):441–456. doi:10.1002/rra.916

    Article  Google Scholar 

  • Megard RO (1981) Effects of planktonic algae on water quality in impoundments of the Mississippi River in Minnesota. In: Stefan HG (ed) Proceedings of the symposium on surface water impoundments. American Society of Civil Engineers, New York, pp 1575–1584

    Google Scholar 

  • Milliman JD (1997) Blessed dams or damned dams? Nature 386:325–327. doi:10.1038/386325a0

    Article  Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. Geology 91:1–21

    Article  Google Scholar 

  • Milliman JD, Quraishee GS, Beg MNA (1984) Sediment discharge from the Indus River to the ocean: Past, present and future. In: Haq BU (ed) Marine geology and oceanography of the Arabian Sea. Van Nostrand Reinhold, New York, pp 65–70

    Google Scholar 

  • Montagnes DJS, Berges JA, Harrison PJ, Taylor FJR (1994) Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol Oceanogr 39(5):1044–1060

    Article  Google Scholar 

  • Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308:405–408. doi:10.1126/science.1107887

    Article  Google Scholar 

  • Ragueneau O, Treguer P (1994) Determination of biogenic silica in coastal waters: applicability and limits of the alkaline digestion method. Mar Chem 45:43–51. doi:10.1016/0304-4203(94)90090-6

    Article  Google Scholar 

  • Ragueneaua O, Savoye N, Yolanda DA, Cottenc J, Tardiveaua B, Leynaerta A (2005) A new method for the measurement of biogenic silica in suspended matter of coastal waters: using Si:Al ratios to correct for the mineral interference. Cont Shelf Res 25:697–710. doi:10.1016/j.csr.2004.09.017

    Article  Google Scholar 

  • Ran XB, Yu ZG, Yao QZ, Chen HT, Mi TZ (2010) Major ion geochemistry and nutrient behavior in the mixing zone of the Changjiang (Yangtze) River and its tributaries in the Three Gorges Reservoir. Hydrol Process 24(17):2481–2495. doi:10.1002/hyp.7684

    Google Scholar 

  • Ran XB, Yu ZG, Yao QZ, Chen HT, Guo HB (2012) Silica retention in the Three Gorges Reservoir. Biogeochemistry. doi:10.1007/s10533-012-9717-0

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    Google Scholar 

  • Shi DM (1999) Analysis of Relationship between soil and water loss and flood disasters in Yangtze River Basin. J Soil Water Conserv 5(1):1–7

    Google Scholar 

  • Soballe DM, Bachmann RW (1984) Removal of Des Moines River phytoplankton by reservoir transit. Can J Fish Aquat Sci 41:1803–1813

    Article  Google Scholar 

  • Strathmann RR (1967) Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol Oceanogr 12(3):411–418

    Article  Google Scholar 

  • Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380. doi:10.1126/science.1109454

    Article  Google Scholar 

  • Teodoru C, Wehrli B (2005) Retention of sediments and nutrients in the Iron Gate I reservoir on the Danube River. Biogeochemistry 76:539–565. doi:10.1007/s10533-005-0230-6

    Article  Google Scholar 

  • Thornton KW (1990) Sedimentary processes. In: Thornton KW (ed) Reservoir limnology: ecological perspectives. Wiley, New York

    Google Scholar 

  • Tréguer P, Nelson DM, Bennekom VAJ, DeMaster DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379. doi:10.1126/science.268.5209.375

    Article  Google Scholar 

  • Turner RE, Qureshi N, Rabalais NN, Dortch Q, Justić D, Shaw R, Cope J (1998) Fluctuating silicate: nitrate ratios and coastal plankton food webs. Ecology 95:13048–13051. doi:10.1073/pnas.95.22.13048

    Google Scholar 

  • Wang BD, Brockman U (2008) Potential impacts of Three Gorges Dam in China on the ecosystem of East China Sea. Acta Oceanol Sin 27(1):67–76

    Google Scholar 

  • Wang YJ, Lv HY (1993) Phytolith study and its application. China Ocean Press, Beijing, pp 125–141

    Google Scholar 

  • Whaby SD, Bishara NF (1980) The effect of River Nile on Mediterranean water before and after the construction of the High Dam at Aswan. In: Matin IM (ed) River Inputs to Ocean Systems. United Nations, New York, pp 311–318

    Google Scholar 

  • Xu KQ, Hayashi S, Murakami S, Maki H, Xu BH, Watanabe M (2004) Characteristics of water quality in the Changjiang River: observations conducted in 1998 and 1999. Acta Geogr Sin 59(1):118–124

    Google Scholar 

  • Xu KH, Milliman JD, Yang ZS, Xu H (2008) Climatic and anthropogenic impacts on the water and sediment discharge from the Yangtze River (Changjiang), 1950–2005. In: Gupta A (ed) Large rivers:geomorphology and management. Wiley, New York, pp 609–626

    Google Scholar 

  • Yang SL, Zhao Q, Belkin IM (2002) Temporal variation in the sediment load of the Yangtze River and the influences of the human activities. J Hydrol 263:56–71. doi:10.1016/S0022-1694(02)00028-8

    Article  Google Scholar 

  • Yang SL, Zhang J, Dai SB, Li M, Xu XJ (2007) Effect of deposition and erosion within the main river channel and large lakes on sediment delivery to the estuary of the Yangtze River. J Geophys Res 112:F02005. doi:10.1029/2006JF000484

    Article  Google Scholar 

  • Zhang XB, Wen AB (2004) Current changes of sediment yields in the upper Yangtze River and its two biggest tributaries, China. Global Planet Change 41:221–227. doi:10.1016/j.gloplacha.2004.01.008

    Article  Google Scholar 

  • Zhang ER, Zhang J (2003) Analysis of the Three-Gorge Reservoir Impacts on the Retention of N and P in the Yangtze River. J Lake Sci 15(1):41–48

    Google Scholar 

  • Zhang J, Zhang ZF, Liu SM, Wu Y, Xiong H, Chen HT (1999a) Human impacts on the large world rivers: would the Changjiang (Yangtze River) be an illustration? Global Biogeochem Cycles 13(4):1099–1105. doi:10.1029/1999GB900044

    Article  Google Scholar 

  • Zhang J, Ren JL, Liu SM, Zhang ZF, Wu Y, Xiong H, Chen HT (1999b) Dissolved aluminum and silica in the Changjiang (Yangtze River): impact of weathering in subcontinental scale. Global Biogeochem Cycles 17(3):1–11. doi:10.1029/2001GB001400

    Google Scholar 

  • Zhang Q, Xu CY, Becker S, Jiang T (2006) Sediment and runoff changes in the Yangtze River basin during past 50 years. J Hydrol 331:511–523. doi:10.1016/j.jhydrol.2006.05.036

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural Science Foundation of China (Project No. 30490232, 40976044, 41106072). We would like to thank Yeyi Wang, Xueyan Jiang and Kaiguang Yang for English correction of the manuscript. We would also like to thank Zuhua Chen (Ministry of Water Resources of People’s Republic of China) for providing the basic discharge data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhigang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiangbin, R., Zhigang, Y., Hongtao, C. et al. Silicon and sediment transport of the Changjiang River (Yangtze River): could the Three Gorges Reservoir be a filter?. Environ Earth Sci 70, 1881–1893 (2013). https://doi.org/10.1007/s12665-013-2275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2275-5

Keywords

Navigation